Phage Lysis
噬菌体裂解
基本信息
- 批准号:10631067
- 负责人:
- 金额:$ 40.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AnabolismAntibioticsAntimicrobial Cationic PeptidesAreaAutolysisBacteriaBacterial InfectionsBacteriophagesBindingBioinformaticsBiophysicsCell WallCellsComplexCytolysisEnzymesEventFunctional disorderGenesGeneticGenomicsHomeostasisIn VitroInfectionLicensingLipidsMammalian CellMembraneMembrane FusionMembrane ProteinsMetagenomicsModelingMolecularMulti-Drug ResistanceNucleic AcidsPathway interactionsPeptidoglycanPhenotypeProcessProteinsSingle-Stranded DNASystemTestingVirusclinically relevantdesignds-DNAendolysinmutantprogramstool
项目摘要
Lysis of the host cell by bacteriophage is, as the most frequent cytocidal event in the biosphere, a truly
fundamental process. In addition, understanding the molecular basis of phage lysis is now clinically relevant
because phage therapy is emerging as an important tool against multi-drug resistant bacterial infections.
There are two general modes: Multi-Gene Lysis (MGL), used by dsDNA phages, and Single-Gene Lysis (SGL),
used by small single-strand nucleic acid phages. At minimum, MGL systems require a muralytic enzyme, the
endolysin, that degrades the cell wall or peptidoglycan (PG), and a small membrane protein, the holin, that
actively programs the function of the endolysin. At least 10 more classes of phage lysis proteins have also been
identified, including spanins functioning in destruction of the outer membrane in Gram-negative infections or
acting as regulators of holin and endolysin function. The lysis pathways have steps that both respond to and
cause biophysical changes in the host membrane, as well as featuring multiple examples of dynamic membrane
topology and massive quaternary rearrangements, ultimately resulting in holes in the bacterial membrane of
unprecedented micron-scale. Overall, these complex MGL systems make lysis a precisely-controlled, all-or-
nothing phenomenon.
In contrast, the small ssDNA and ssRNA phages have no genomic room for MGL systems. Instead a single
Sgl (single gene lysis) protein acts to cause dysfunction in host PG biosynthesis or homeostasis, eventually
leading to a host autolysis. One class of Sgl’s that block steps in cell wall biosynthesis has been established and
designated as Protein Antibiotics, but the target of more than 20 other Sgl’s identified by bioinformatics and
phage genetics is not known.
In the next five years, the focus will not only be on the remarkable spanins, which fuse membranes during
lysis, but also on two new classes of MGL proteins: releasins and disruptins. Releasins are unique in licensing
dynamic membrane topology of endolysins. Disruptins are small, amphipathic proteins that are used to
weaken the outer membrane; surprisingly, when purified and used in vitro, they function as phage-encoded
versions of the cationic antimicrobial peptides (CAMPs) produced by mammalian cells. The unique power of
phage genetics will be used to determine the mechanisms of both these new MGL proteins. Our biophysical
and structural collaborators will be supp;oed with mutants, phenotypes and constructs to be used in
characterizing lysis at both the atomic level and in the context of the infected single cell. In the SGL area, the
recent hyper-expansion of the metagenomics of ssRNA phages will be exploited to solve the targets of many
new Sgl proteins. The hypothesis is that ssRNA phage Sgl proteins have evolved to attack every step in host cell
wall synthesis and homeostasis. Also, a new model that a major class of Sgl’s acts by binding the universal cell
wall precursor, Lipid II, will be tested.
作为生物圈中最常见的杀细胞事件,噬菌体裂解宿主细胞是一种真正的杀细胞作用。
基本过程。此外,了解噬菌体裂解的分子基础现在具有临床意义
因为噬菌体疗法正在成为对抗多重耐药细菌感染的重要工具。
有两种通用模式:双链 DNA 噬菌体使用的多基因裂解 (MGL) 和单基因裂解 (SGL),
由小型单链核酸噬菌体使用。至少,MGL 系统需要一种胞壁溶解酶,即
内溶素,可降解细胞壁或肽聚糖 (PG),以及一种小膜蛋白,穴蛋白,可降解细胞壁或肽聚糖 (PG)
主动编程内溶素的功能。至少另外 10 类噬菌体裂解蛋白也已被
已鉴定,包括在革兰氏阴性感染中破坏外膜的西班牙蛋白或
作为穴蛋白和细胞内溶素功能的调节剂。裂解途径具有既响应又响应的步骤
引起宿主膜的生物物理变化,以及具有动态膜的多个例子
拓扑结构和大规模四元重排,最终导致细菌膜上出现孔洞
前所未有的微米级。总体而言,这些复杂的 MGL 系统使裂解成为一种精确控制的、全或-
没什么现象。
相比之下,小型 ssDNA 和 ssRNA 噬菌体没有 MGL 系统的基因组空间。而是单个
Sgl(单基因裂解)蛋白最终会导致宿主 PG 生物合成或体内平衡功能障碍
导致宿主自溶。已经建立了一类阻止细胞壁生物合成步骤的 Sgl
被指定为蛋白质抗生素,但生物信息学和其他 20 多个 Sgl 的目标
噬菌体遗传学尚不清楚。
在接下来的五年里,重点将不仅是非凡的跨膜蛋白,它在过程中融合膜
裂解,而且还作用于两类新的 MGL 蛋白:释放素和破坏素。发行版在许可方面是独一无二的
内溶素的动态膜拓扑结构。干扰素是一种小的两亲性蛋白质,用于
削弱外膜;令人惊讶的是,当在体外纯化和使用时,它们充当噬菌体编码的
由哺乳动物细胞产生的阳离子抗菌肽(CAMP)的版本。独特的力量
噬菌体遗传学将用于确定这两种新 MGL 蛋白的机制。我们的生物物理学
和结构合作者将获得突变体、表型和构建体用于
在原子水平和受感染的单细胞背景下表征裂解。在 SGL 区域,
最近 ssRNA 噬菌体宏基因组学的超扩展将被用来解决许多目标
新的Sgl蛋白。假设 ssRNA 噬菌体 Sgl 蛋白已经进化到可以攻击宿主细胞的每一步
壁合成和稳态。另外,Sgl的主要类通过绑定通用单元来起作用的新模型
将测试壁前体脂质 II。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RYLAND F YOUNG其他文献
RYLAND F YOUNG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RYLAND F YOUNG', 18)}}的其他基金
2006 Bacterial Cell Surfaces Gordon Research Conference
2006 年细菌细胞表面戈登研究会议
- 批准号:
7113592 - 财政年份:2006
- 资助金额:
$ 40.02万 - 项目类别:
Phages of Burkholderia cepacia:Biology and Therapeutics
洋葱伯克霍尔德菌噬菌体:生物学和治疗学
- 批准号:
7371145 - 财政年份:2006
- 资助金额:
$ 40.02万 - 项目类别:
Phages of Burkholderia Cepacia: Biology and Therapeutics
洋葱伯克霍尔德菌噬菌体:生物学和治疗学
- 批准号:
7030083 - 财政年份:2006
- 资助金额:
$ 40.02万 - 项目类别:
Phages of Burkholderia Cepacia: Biology and Therapeutics
洋葱伯克霍尔德菌噬菌体:生物学和治疗学
- 批准号:
7613353 - 财政年份:2006
- 资助金额:
$ 40.02万 - 项目类别:
Phages of Burkholderia cepacia:Biology and Therapeutics
洋葱伯克霍尔德菌噬菌体:生物学和治疗学
- 批准号:
7188123 - 财政年份:2006
- 资助金额:
$ 40.02万 - 项目类别:
BECKMAN TL-100 TABLE TOP ULTRACENTRIFUGE
BECKMAN TL-100 台式超速离心机
- 批准号:
3522594 - 财政年份:1987
- 资助金额:
$ 40.02万 - 项目类别:
MINORITY HIGH SCHOOL STUDENT RESEARCH APPRENTICE PROGRAM
少数民族高中生研究学徒计划
- 批准号:
3512763 - 财政年份:1987
- 资助金额:
$ 40.02万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 40.02万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 40.02万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 40.02万 - 项目类别:
Studentship














{{item.name}}会员




