Retinoic acid target genes and transcriptional mechanisms during eye development
眼睛发育过程中视黄酸靶基因和转录机制
基本信息
- 批准号:10629421
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:ALDH1A2 geneATAC-seqAddressAll-Trans-RetinolBindingBiological AssayCandidate Disease GeneChIP-seqChromatinClustered Regularly Interspaced Short Palindromic RepeatsDNADefectDepositionDevelopmentDiffusionDiseaseEP300 geneEmbryoEmbryonic DevelopmentEnhancersEpigenetic ProcessExhibitsEyeEye DevelopmentFOXC1 geneFailureGene ActivationGene SilencingGenesGenetic Enhancer ElementGenetic TranscriptionGenomeGoalsGrowthHumanKnock-outKnowledgeLearningLoxP-flanked alleleMesenchymeMethodsMicrophthalmosMorphogenesisMorphologyMusMutationNCOR1 geneNeural CrestNuclearNuclear ReceptorsOptic vesicleOpticsRepressionRetinoic Acid BindingRetinoic Acid ReceptorRetinoic Acid Response ElementRetinol dehydrogenaseSignal PathwayTestingTissuesTranscriptional RegulationTransgenesTretinoinUntranslated RNAVitamin Acandidate identificationconditional knockouteye formationgene functiongene regulatory networkgene repressiongenetic corepressorimprovedin vivoinsightinterestmutantnovel strategiesoptic cupposttranscriptionalrecruitretinaldehyde dehydrogenasetranscriptome sequencing
项目摘要
PROJECT SUMMARY
One of the most critical functions of the vitamin A (retinol) metabolite retinoic acid (RA) is control of
eye development. In mouse, RA synthesis occurs early in the optic field with expression of retinol
dehydrogenase-10 (RDH10) and all three retinaldehyde dehydrogenases (ALDH1A1, ALDH1A2,
ALDH1A3) that convert retinol to RA. RA diffuses to tissues throughout the optic placode, optic
vesicle, and adjacent mesenchyme to stimulate folding of the optic vesicle to form the optic cup by
E10.5. At E12.5-E14.5, RA is needed for further morphogenesis of the optic cup and surrounding
perioptic mesenchyme; loss of RA leads to microphthalmia. RA functions by binding to nuclear RA
receptors at RA response elements (RAREs) that either activate or repress transcription of key
genes. Binding of RA to RA receptors regulates recruitment of transcriptional coregulators such as
nuclear receptor coactivator (NCOA) and nuclear receptor corepressor (NCOR), which in turn
control binding of the generic coactivator p300 and the generic corepressor PRC2. However, a
major unsolved problem is what are the key genes controlled by RA during development of the eye;
only two candidate direct RA target genes are known (Pitx2 and Foxc1). As loss or gain of RA
activity alters expression of thousands of genes (perhaps many due to post-transcriptional effects),
it remains difficult to identify genes that are direct transcriptional targets of RA. In our Preliminary
Studies we addressed this question by comparing ChIP-seq and RNA-seq for tissues from
Aldh1a2-/- embryos lacking RA synthesis, thus identifying genes with altered expression when RA
is missing that also have nearby RA-regulated deposition of H3K27ac (gene activation mark) or
H3K27me3 (gene repression mark) associated with RAREs. Such RARE enhancers/silencers were
identified near genes already known to be required for embryonic development, thus validating our
approach. CRISPR knockouts for several predicted new direct RA target genes verified their
requirements for development. Here, we plan to use this approach to identify RA target genes and
PITX2 target genes during eye development by comparing ChIP-seq (H3K27ac & H3K27me3) and
RNA-seq for wild-type vs RA-deficient optic vesicle and eye, and wild-type vs Pitx2 knockout eye.
We will also identify RA-regulated enhancers and silencers in the eye to uncover the mechanisms
through which RA regulates Pitx2, Foxc1, or other genes. Our studies will provide vital information
on the mechanisms utilized by RA and PITX2 to control transcription in the eye and will identify
gene regulatory networks during eye formation. This knowledge will help determine how eye
defects occur, identify new genes or enhancers/silencers that may be mutational targets causing
human eye defects, and improve strategies to treat eye defects.
项目摘要
维生素A(视黄醇)代谢产物视黄酸(RA)的最关键功能之一是控制
眼睛发育在小鼠中,RA合成发生在视野的早期,并表达视黄醇
脱氢酶-10(RDH 10)和所有三种视黄醇脱氢酶(ALDH 1A 1,ALDH 1A 2,
ALDH 1A 3),将视黄醇转化为RA。RA扩散至整个视基板、视神经
囊泡和邻近的间充质,以刺激视泡折叠,从而通过
E10.5。在E12.5-E14.5,视杯和周围的进一步形态发生需要RA
视周间充质; RA缺失导致小眼球。RA通过与核RA结合发挥功能
RA反应元件(RARE)上的受体,其激活或抑制关键转录因子的转录。
基因. RA与RA受体的结合调节转录辅助调节因子的募集,例如
核受体辅激活子(NCOA)和核受体辅阻遏子(NCOR),
控制通用共激活因子p300和通用共阻遏因子PRC 2的结合。但
目前尚未解决的主要问题是在眼睛发育过程中RA控制的关键基因是什么;
只有两个候选的直接RA靶基因是已知的(Pitx 2和Foxc 1)。作为RA的损失或增益
活性改变了数千个基因的表达(可能许多是由于转录后效应),
仍然难以鉴定作为RA的直接转录靶的基因。在我们的初步
我们通过比较ChIP-seq和RNA-seq的组织来解决这个问题,
缺乏RA合成的Aldh 1a 2-/-胚胎,从而鉴定RA时表达改变的基因
缺失也具有附近RA调节的H3 K27 ac沉积(基因激活标记)的基因,或
H3 K27 me 3(基因阻遏标记)与RARE相关。这种RARE增强子/沉默子是
确定了已知胚胎发育所需的近基因,从而验证了我们的研究结果。
approach.几个预测的新的直接RA靶基因的CRISPR敲除验证了它们的有效性。
发展的要求。在这里,我们计划使用这种方法来识别RA靶基因,
通过比较ChIP-seq(H3 K27 ac & H3 K27 me 3)和
用于野生型与RA缺陷视泡和眼以及野生型与Pitx 2敲除眼的RNA-seq。
我们还将确定眼睛中RA调节的增强子和沉默子,以揭示其机制。
RA通过其调节Pitx 2、Foxc 1或其他基因。我们的研究将提供重要的信息
RA和PITX 2控制眼睛转录的机制,并将确定
眼睛形成过程中的基因调控网络。这些知识将有助于确定眼睛
缺陷发生时,识别可能是突变靶点的新基因或增强子/沉默子,
人类眼睛缺陷和治疗眼睛缺陷改进策略。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Insufficient support for retinoic acid receptor control of synaptic plasticity through a non-genomic mechanism.
对于视黄酸受体通过非基因组机制控制突触可塑性的支持不足。
- DOI:10.1016/j.yfrne.2023.101099
- 发表时间:2023
- 期刊:
- 影响因子:7.4
- 作者:Duester,Gregg
- 通讯作者:Duester,Gregg
Retinoic acid, RARs and early development.
- DOI:10.1530/jme-22-0041
- 发表时间:2022-11-01
- 期刊:
- 影响因子:3.5
- 作者:Berenguer, Marie;Duester, Gregg
- 通讯作者:Duester, Gregg
Synaptic Plasticity is Altered by Treatment with Pharmacological Levels of Retinoic Acid Acting Nongenomically However Endogenous Retinoic Acid has not been shown to have Nongenomic Activity.
- DOI:pii: 461
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Duester G
- 通讯作者:Duester G
Towards a Better Vision of Retinoic Acid Signaling during Eye Development.
- DOI:10.3390/cells11030322
- 发表时间:2022-01-19
- 期刊:
- 影响因子:6
- 作者:Duester G
- 通讯作者:Duester G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGG L DUESTER其他文献
GREGG L DUESTER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GREGG L DUESTER', 18)}}的其他基金
Retinoic acid target genes and transcriptional mechanisms during eye development
眼睛发育过程中视黄酸靶基因和转录机制
- 批准号:
10402836 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Retinoic acid target genes and transcriptional mechanisms during eye development
眼睛发育过程中视黄酸靶基因和转录机制
- 批准号:
10201360 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Factors Regulating Development of Appendicular Skeletal Progenitors
调节附肢骨骼祖细胞发育的因素
- 批准号:
9012780 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Factors Regulating Development of Appendicular Skeletal Progenitors
调节附肢骨骼祖细胞发育的因素
- 批准号:
9197607 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Animal Model to Study Retinoic Acid Function in Postnatal and Adult Tissues
研究产后和成人组织中视黄酸功能的动物模型
- 批准号:
8074763 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Animal Model to Study Retinoic Acid Function in Postnatal and Adult Tissues
研究产后和成人组织中视黄酸功能的动物模型
- 批准号:
8327723 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Generation of Retinoid Signals During Development
发育过程中类维生素A信号的产生
- 批准号:
7926206 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Retinoid Dehydrogenases Involved in Eye Development
类视黄醇脱氢酶参与眼睛发育
- 批准号:
6622890 - 财政年份:2002
- 资助金额:
$ 39万 - 项目类别:
Generation of Retinoid Signals during Development
发育过程中类视黄醇信号的产生
- 批准号:
8234448 - 财政年份:2002
- 资助金额:
$ 39万 - 项目类别:
Retinoid Dehydrogenases Involved in Eye Development
类视黄醇脱氢酶参与眼睛发育
- 批准号:
7303907 - 财政年份:2002
- 资助金额:
$ 39万 - 项目类别:
相似国自然基金
基于ATAC-seq与DNA甲基化测序探究染色质可及性对莲两生态型地下茎适应性分化的作用机制
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
利用ATAC-seq联合RNA-seq分析TOP2A介导的HCC肿瘤细胞迁移侵
袭的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
靶向治疗动态调控肺癌细胞DNA可接近性的ATAC-seq分析
- 批准号:81802809
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
运用ATAC-seq技术分析染色质可接近性对犏牛初级精母细胞基因表达的调控作用
- 批准号:31802046
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq和RNA-seq研究CWIN调控采后番茄果实耐冷性作用机制
- 批准号:31801915
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq高精度预测染色质相互作用的新方法和基于增强现实的3D基因组数据可视化
- 批准号:31871331
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Project #2 Integrated single-nucleus multi-omics (ATAC-seq+RNA-seq or chromatin accessibility + RNA-seq) of human TGs
项目
- 批准号:
10806548 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
A transposase system for integrative ChIP-exo and ATAC-seq analysis at single-cell resolution
用于单细胞分辨率综合 ChIP-exo 和 ATAC-seq 分析的转座酶系统
- 批准号:
10210424 - 财政年份:2018
- 资助金额:
$ 39万 - 项目类别:
EAPSI: Developing Single Nucleus ATAC-seq to Map the Ageing Epigenome
EAPSI:开发单核 ATAC-seq 来绘制衰老表观基因组图谱
- 批准号:
1714070 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Fellowship Award
A cloud-based learning module to analyze ATAC-seq and single cell ATAC-seq data
基于云的学习模块,用于分析 ATAC-seq 和单细胞 ATAC-seq 数据
- 批准号:
10558379 - 财政年份:2001
- 资助金额:
$ 39万 - 项目类别:














{{item.name}}会员




