Biophysical foundations of evolutionary dynamics
进化动力学的生物物理学基础
基本信息
- 批准号:10633124
- 负责人:
- 金额:$ 76.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Antibiotic ResistanceAntibioticsBiophysicsCell modelCodon NucleotidesCytoplasmDevelopmentDihydrofolate ReductaseDrug resistanceEnzymesEscherichia coliEvolutionFoundationsGenotypeGoalsImmune responseMapsMessenger RNAMetabolicMetaphorModelingMolecularNucleic AcidsOutcomePharmaceutical PreparationsPhenotypePopulationPropertyProtein EngineeringProteinsProteomicsReproducibilityResearchResistanceRoboticsRouteStressSystemViralbiophysical analysisbiophysical modelbiophysical propertiesexperimental studyfightingfitnessgenome editinglaboratory experimentmetabolomicsmodel organismmulti-scale modelingnovel strategiespathogenprotein foldingrational designresponsestressortheoriestooltrait
项目摘要
The overarching goal of this research is to develop predictive multiscale biophysical models of adaptive
evolutionary dynamics. The new concept of Biophysical Fitness Landscape (BFL) is a map of protein/nucleic
acid molecular properties to fitness. We demonstrated the conceptual validity of BFL by discovering a simple
and accurate quantitative relationship between fitness of E. coli and molecular properties of important core
metabolic enzymes. This finding transforms the concept of fitness landscape from an artful metaphor into a
quantitative tractable tool to predict the genotype-phenotype relationship (GPR). Here we take these findings
as a foundation to further extend our understanding of interplay between biophysical and population factors
that determine the dynamics and outcome of adaptive evolution. We will apply biophysical analysis, automated
robotics setup along with protein engineering and genomic editing tools to explore evolutionary dynamics in
laboratory experiments under conditions that allow tight control on all scales – from molecules to populations.
As a key model we carry out a set of evolution experiments with adapting populations of E. coli escaping from
antibiotic stress and structural instability of the essential protein Dihydrofolate Reductase. We characterize on
all scales – genotyping, molecular traits, systems proteomics and metabolomics and population - multiple
evolutionary paths to resistance and adaption of emerging bacterial strains and determine at which level of
description (genotype, biophysical properties, systems responses) evolution becomes reproducible – and by
implication predictable. We model the evolutionary dynamics using multiscale models where cytoplasm of
model cells is presented in a biophysically realistic manner, and fitness of model organisms is predicted from
its molecular traits using experimentally derived BFL. Comprehensive molecular mapping of possible escape
routes will provide an opportunity to rationally design new class of compounds – “evolution drugs” - that
comprehensively block pathogen’s resistance. In a related effort we will explore the biophysical underpinnings
of codon adaptation to discern their effects on mRNA and cotranslational protein folding. A tight integration
between theory and experiment will provide an opportunity to develop predictive evolutionary models of ever
increasing accuracy and realism. Progress along these lines will transform our approaches to study
evolutionary dynamics from descriptive into predictive and quantitative, which will be instrumental to the
development of novel approaches to fight antibiotic resistance and, potentially, viral escape from stressors
such as drugs and immune response.
这项研究的首要目标是开发预测性多尺度生物物理模型的适应性
进化动力学生物物理适应度景观(BFL)的新概念是蛋白质/核酸的地图
酸性分子的性质来适应。我们通过发现一个简单的
和E.大肠杆菌及其重要核心的分子特性
代谢酶这一发现将健身景观的概念从一个巧妙的比喻转变为一个
预测基因型-表型关系(GPR)的定量易处理工具。我们把这些发现
作为进一步扩大我们对生物物理和人口因素之间相互作用的理解的基础
决定适应性进化的动态和结果。我们将应用生物物理分析,
机器人技术与蛋白质工程和基因组编辑工具一起沿着,
实验室实验的条件下,允许严格控制所有规模-从分子到人口。
作为一个关键模型,我们进行了一系列的进化实验与适应人口的E。大肠杆菌从
抗生素应激和必需蛋白二氢叶酸还原酶的结构不稳定性。我们的特点是
所有量表-基因分型、分子性状、系统蛋白质组学和代谢组学以及群体-多重
新出现的细菌菌株的耐药性和适应性的进化路径,并确定
描述(基因型,生物物理特性,系统响应)进化变得可重复-并通过
含义可预测。我们使用多尺度模型模拟进化动力学,
模型细胞以生物药理学现实的方式呈现,并且模型生物体的适合度由
它的分子性状使用实验衍生的BFL。可能逃逸的综合分子图谱
路线将提供一个机会,合理地设计新的化合物类-“进化药物”,
全面阻断病原菌的抗药性。在相关的努力中,我们将探索生物物理基础
的密码子适应,以辨别其对mRNA和共翻译蛋白质折叠的影响。的紧密集成
理论和实验之间的联系将提供一个机会,开发预测性的进化模型,
提高准确性和真实性。沿着这些路线的进展将改变我们的研究方法
从描述性到预测性和定量的进化动力学,这将有助于
开发新的方法来对抗抗生素耐药性,并可能使病毒逃离压力源
如药物和免疫反应。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enzymatic metabolons dramatically enhance metabolic fluxes of low-efficiency biochemical reactions.
酶代谢显着增强低效生化反应的代谢通量。
- DOI:10.1016/j.bpj.2023.10.033
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Ranganathan,Srivastav;Liu,Junlang;Shakhnovich,Eugene
- 通讯作者:Shakhnovich,Eugene
A native chemical chaperone in the human eye lens.
- DOI:10.7554/elife.76923
- 发表时间:2022-06-20
- 期刊:
- 影响因子:7.7
- 作者:Serebryany, Eugene;Chowdhury, Sourav;Woods, Christopher N.;Thorn, David C.;Watson, Nicki E.;McClelland, Arthur A.;Klevit, Rachel E.;Shakhnovich, Eugene, I
- 通讯作者:Shakhnovich, Eugene, I
The physics of liquid-to-solid transitions in multi-domain protein condensates.
多域蛋白质凝聚物中液体到固体转变的物理学。
- DOI:10.1016/j.bpj.2022.06.013
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Ranganathan,Srivastav;Shakhnovich,Eugene
- 通讯作者:Shakhnovich,Eugene
Separation of sticker-spacer energetics governs the coalescence of metastable biomolecular condensates.
粘着物-间隔物能量学的分离控制着亚稳态生物分子凝聚体的聚结。
- DOI:10.1101/2023.10.03.560747
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chattaraj,Aniruddha;Shakhnovich,EugeneI
- 通讯作者:Shakhnovich,EugeneI
Co-translational formation of disulfides guides folding of the SARS-CoV-2 receptor binding domain.
二硫键的共翻译形成引导 SARS-CoV-2 受体结合域的折叠。
- DOI:10.1016/j.bpj.2023.07.002
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Bitran,Amir;Park,Kibum;Serebryany,Eugene;Shakhnovich,EugeneI
- 通讯作者:Shakhnovich,EugeneI
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EUGENE I SHAKHNOVICH其他文献
EUGENE I SHAKHNOVICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EUGENE I SHAKHNOVICH', 18)}}的其他基金
Biophysical foundations of evolutionary dynamics
进化动力学的生物物理学基础
- 批准号:
10452241 - 财政年份:2021
- 资助金额:
$ 76.02万 - 项目类别:
Biophysical foundations of evolutionary dynamics
进化动力学的生物物理基础
- 批准号:
10413808 - 财政年份:2021
- 资助金额:
$ 76.02万 - 项目类别:
Structure and Interactions of Conformational Intermediates in gamma-D Crystallin Aggregation, and Their Targeting for Cataract Prevention
γ-D 晶状体蛋白聚集中构象中间体的结构和相互作用及其预防白内障的靶向作用
- 批准号:
10401812 - 财政年份:2020
- 资助金额:
$ 76.02万 - 项目类别:
Structure and Interactions of Conformational Intermediates in gamma-D Crystallin Aggregation, and Their Targeting for Cataract Prevention
γ-D 晶状体蛋白聚集中构象中间体的结构和相互作用及其预防白内障的靶向作用
- 批准号:
10608130 - 财政年份:2020
- 资助金额:
$ 76.02万 - 项目类别:
Study of phenotypic and fitness effects of non-functional protein interactions in
非功能性蛋白质相互作用的表型和适应度效应研究
- 批准号:
8912519 - 财政年份:2014
- 资助金额:
$ 76.02万 - 项目类别:
Study of Biological Evolution of Structure and Function in Proteins
蛋白质结构和功能的生物进化研究
- 批准号:
8624697 - 财政年份:2004
- 资助金额:
$ 76.02万 - 项目类别:
Evolutionary study of structure-function relationship
结构-功能关系的进化研究
- 批准号:
6773025 - 财政年份:2004
- 资助金额:
$ 76.02万 - 项目类别:
Realistic protein folding with hydrophobic potentials
具有疏水潜力的真实蛋白质折叠
- 批准号:
6844886 - 财政年份:2004
- 资助金额:
$ 76.02万 - 项目类别:
Evolutionary study of structure-function relationship
结构-功能关系的进化研究
- 批准号:
6874497 - 财政年份:2004
- 资助金额:
$ 76.02万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 76.02万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 76.02万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 76.02万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 76.02万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 76.02万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 76.02万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 76.02万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 76.02万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 76.02万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 76.02万 - 项目类别:
Studentship














{{item.name}}会员




