Measuring the Value of Improving Access to Community Care
衡量改善社区护理服务的价值
基本信息
- 批准号:10668937
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAppointmentAreaBudgetsBusinessesCardiologyCaringCharacteristicsCommunitiesCommunity Care NetworksCommunity HealthcareCommunity NetworksContractsDataData LinkagesDegree programDevelopmentDimensionsEconometric ModelsEligibility DeterminationEnsureEvaluationFacilities and Administrative CostsFutureGeographic LocationsGoalsHealth PolicyHealth Services AccessibilityHealth care facilityHealthcareHealthcare SystemsHeterogeneityImprove AccessIndividualLearningLightLiteratureLocationLogit ModelsMarketingMeasurementMeasuresMedicalMethodologyMethodsModelingObservational StudyOffice ManagementOutpatientsParameter EstimationPatient PreferencesPatient SelectionPatientsPerceptionPerformancePoliciesPolicy MakerPrimary CareProviderQuality of CareRecommendationRelaxationRoleScienceSpecific qualifier valueStatutes and LawsStrategic PlanningTimeTravelUnited StatesValidationVeteransWait Timecare systemscostdesigneconometricseconomic valuehealth assessmenthealth care availabilityhealth care qualityhealth care servicehealth economicsimprovedinnovationinterestmedical specialtiesnovelopportunity costoutpatient programspreferenceprogramssimulationstemtoolwillingness to pay
项目摘要
Background: Providing timely access to health care has been a long-standing VA goal that has been re-
emphasized by the Commission on Care. To improve access to care, VA implemented the Veterans Choice
Program in August 2014, which provides eligible Veterans the option of receiving care from community
providers paid for by VA. Currently, there is a substantial gap in scientific evidence on the effect of the Choice
Program and other VA community care programs, particularly in regards to the degree the program has
improved access to care. More generally, non-VA literature examining the effect of greater provider options
has focused on changes in utilization, but has not assessed the value of improved patient choice. The
development of measures that capture the value of greater provider options is methodologically challenging
because patients’ preferences are not directly observed and value encompasses many dimensions of access
(e.g., travel distance, appointment wait times, provider quality, etc.). To address these evidence gaps, we
propose the development and examination of new measures capturing the value of provider options to
Veterans using state-of-the art econometric methods. Greater scientific evidence to help VA provide enhanced
choice for Veterans through the Choice Program and future VA community care programs is consistent with
the VHA FY 2018-2019 Operational Plan. This study addresses the ORD-wide Learning Health Care System
priority area and HSR&D’s Access and Health Care Systems Change major priority domains.
Objectives: The objectives of this study are to: 1) develop new econometric method applications to
quantitatively measure the value of greater access to providers from the perspective of Veterans and 2)
examine the relative importance of local area and provider characteristics in determining Veterans’ value of
having improved access to providers.
Methods: This observational study will examine VA administrative data and existing public data characterizing
outpatient providers. In Aim 1, we will use VA administrative data to identify: 1) Veterans eligible for the VA
Choice Program in 2016, 2) VA and Choice outpatient providers and 3) utilization of outpatient services from
VA facilities and through the Choice Program. We will analyze Veterans’ revealed preference for providers
using econometric random utility models. These models assume patients select the provider that yields the
greatest benefit, given all available options. We will empirically estimate Veterans’ choice of provider within the
random utility framework using a nested multinomial logit model (NMNL). We will then use parameter
estimates and predictive margins from the NMNL model to calculate the value of greater provider options
through the Choice Program. Specifically, econometric models will calculate Veterans’ willingness to pay
(WTP), which represents the maximum dollar amount an individual would theoretically pay for greater provider
options. In Aim 2, we will apply econometric decomposition methods to models developed in Aim 1 to assess
the influence of key provider and local area characteristics in determining value. Notably, we will leverage
novel data linkages between VA administrative data and public use data capturing an extensive set of provider
characteristics.
Statement on Next Steps: We will develop a simulation tool designed for non-researchers that incorporates
study results to estimate the value to Veterans of a specified set of provider options (i.e. a community care
network). This tool will provide the ability for operational partners to assess the adequacy of community care
networks and establish the business case of “what-if” scenarios. Stakeholders will be able to adapt to changing
conditions through simulating the hypothetical addition and subtraction of providers within a community care
network. This simulation feature will facilitate future analyses to ensure community care networks include high
quality providers that best match Veterans’ preferences.
背景:及时提供医疗保健一直是退伍军人管理局的长期目标,现已重新
护理委员会强调的。为了改善获得护理的机会,退伍军人管理局实施了退伍军人选择计划
计划于2014年8月推出,该计划为符合条件的退伍军人提供接受社区护理的选择
供应商由退伍军人管理局支付。目前,关于这一选择的影响的科学证据存在很大差距
计划和其他退伍军人管理局社区关怀计划,特别是在计划拥有的学位方面
改善了获得护理的机会。更广泛地说,非退伍军人管理局的文献考察了更大的提供商选项的影响
关注使用率的变化,但没有评估改善患者选择的价值。这个
开发获取更多提供商选择的价值的措施在方法上具有挑战性
因为患者的偏好没有被直接观察到,而且价值包含了许多方面的访问
(例如,旅行距离、预约等待时间、提供者质量等)。为了解决这些证据差距,我们
建议开发和审查获取提供商选项价值的新措施,以
退伍军人使用最先进的计量经济学方法。更多科学证据帮助退伍军人事务部
退伍军人通过Choice计划和未来的退伍军人社区关怀计划进行的选择与
VHA 2018-2019财年运营计划。这项研究针对的是全美学习卫生保健系统
优先领域和高铁的接入和医疗保健系统改变了主要的优先领域。
目标:本研究的目标是:1)开发新的计量经济学方法应用于
从退伍军人的角度定量衡量更多接触提供者的价值和2)
考察当地和提供者特征在确定退伍军人价值时的相对重要性
改善了对供应商的访问。
方法:这项观察性研究将检查退伍军人管理局的管理数据和现有的公共数据
门诊部。在目标1中,我们将使用退伍军人管理局的数据来确定:1)符合退伍军人资格的退伍军人
2016年的CHOICE计划,2)退伍军人事务部和CHOICE门诊提供者和3)门诊服务的利用
通过退伍军人事务部的设施和选择计划。我们将分析退伍军人对提供者的显露偏好
使用计量经济学随机效用模型。这些模型假设患者选择产生
考虑到所有可用的选择,这是最大的好处。我们将经验地估计退伍军人对提供者的选择
使用嵌套多项Logit模型(NMNL)的随机效用框架。然后我们将使用参数
来自NMNL模型的估计和预测利润率,以计算更大提供商选项的价值
通过Choice计划。具体地说,计量经济模型将计算退伍军人的支付意愿
(WTP),这代表理论上个人为更大的提供商支付的最大美元金额
选择。在目标2中,我们将把计量经济学分解方法应用于目标1中开发的模型,以评估
关键供应商和当地特征对决定价值的影响。值得注意的是,我们将利用
退伍军人管理局管理数据和公共使用数据之间的新颖数据链接,捕获了广泛的提供商集
特点。
关于下一步的声明:我们将开发一个为非研究人员设计的模拟工具,其中包括
评估一组特定提供者选项(即社区护理)对退伍军人的价值的研究结果
网络)。这一工具将使业务伙伴能够评估社区护理的充分性。
网络,并建立“假设”情景的业务案例。利益相关者将能够适应变化
通过模拟社区护理中提供者的假设加法和减法来确定条件
网络。此模拟功能将促进未来的分析,以确保社区护理网络包括HIGH
最符合退伍军人喜好的优质供应商。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edwin S. Wong其他文献
Factors Associated with Use of Telemedicine Among American Indian and Alaska Native Medicaid Beneficiaries
- DOI:
10.1007/s11606-025-09355-3 - 发表时间:
2025-01-17 - 期刊:
- 影响因子:4.200
- 作者:
Edwin S. Wong;Anna M. Morenz;Amy Hsu;Jason F. Deen;Jubi Y. L. Lin;Joshua M. Liao;Ashok Reddy - 通讯作者:
Ashok Reddy
Impact of VHA's primary care intensive management program on dual system use
- DOI:
10.1016/j.hjdsi.2020.100450 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:
- 作者:
Edwin S. Wong;Rong Guo;Jean Yoon;Donna M. Zulman;Steven M. Asch;Michael K. Ong;Evelyn T. Chang - 通讯作者:
Evelyn T. Chang
Disparities in telemedicine use among Native Hawaiian and Pacific Islander individuals insured through Medicaid
通过医疗补助投保的夏威夷原住民和太平洋岛民在远程医疗使用方面的差异
- DOI:
10.1093/haschl/qxae057 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Anna M. Morenz;Ashok Reddy;Amy Hsu;Anh Le;Edwin S. Wong;Joshua M. Liao - 通讯作者:
Joshua M. Liao
Correction: Design and analysis of outcomes following SARS-CoV-2 infection in veterans
- DOI:
10.1186/s12874-023-02021-4 - 发表时间:
2023-08-25 - 期刊:
- 影响因子:3.400
- 作者:
Valerie A. Smith;Theodore S. Z. Berkowitz;Paul Hebert;Edwin S. Wong;Meike Niederhausen;John A. Pura;Kristin Berry;Pamela Green;Anna Korpak;Alexandra Fox;Aaron Baraff;Alex Hickok;Troy A Shahoumian;Amy S.B. Bohnert;Denise M. Hynes;Edward J. Boyko;George N. Ioannou;Theodore J. Iwashyna;C. Barrett Bowling;Ann M. O’Hare;Matthew L. Maciejewski - 通讯作者:
Matthew L. Maciejewski
Comparison of clinic-based assistance versus a centralized call center on patient-reported social needs: findings from a randomized pilot social health integration program
- DOI:
10.1186/s12889-025-22334-x - 发表时间:
2025-03-28 - 期刊:
- 影响因子:3.600
- 作者:
Ammarah Mahmud;Meagan C. Brown;Edwin S. Wong;India J. Ornelas;Robert Wellman;Roy Pardee;Sophia Mun;Ariel Singer;Emily Westbrook;Kathleen Barnes;Heidi Den Haan;Cara C. Lewis - 通讯作者:
Cara C. Lewis
Edwin S. Wong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edwin S. Wong', 18)}}的其他基金
Measuring the Value of Improving Access to Community Care
衡量改善社区护理服务的价值
- 批准号:
10847381 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Identifying Value-Driven Approaches to Strengthening the VA Physician Workforce
确定以价值驱动的方法来加强 VA 医生队伍
- 批准号:
10186500 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Identifying Value-Driven Approaches to Strengthening the VA Physician Workforce
确定以价值驱动的方法来加强 VA 医生队伍
- 批准号:
9691048 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Identifying Value-Driven Approaches to Strengthening the VA Physician Workforce
确定以价值驱动的方法来加强 VA 医生队伍
- 批准号:
10308422 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似海外基金
AI-powered digital healthcare platform that delivers health benefits to Bengali speakers in the UK through voice-driven remote medical triaging, appointment booking and self-care at home.
由人工智能驱动的数字医疗平台,通过语音驱动的远程医疗分类、预约和在家自我护理,为英国的孟加拉语使用者提供健康益处。
- 批准号:
10043942 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant for R&D
An Innovative, Automated, Machine Learning Appointment, Logistics and Communication Platform for Mobile Service Provider SMEs that can incorporate
为移动服务提供商中小企业提供创新、自动化、机器学习预约、物流和通信平台,可将
- 批准号:
86195 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Collaborative R&D
Factors Promoting and Inhibiting the Appointment of Women in the Public Sector
促进和抑制妇女在公共部门任职的因素
- 批准号:
20H01456 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Primary Care Online Appointment Scheduling Platform for Emergency Departments: Improving the Care Transition between Emergency and Primary Care
急诊科初级保健在线预约安排平台:改善急诊和初级保健之间的护理过渡
- 批准号:
382187 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Operating Grants
Appointment of Supreme Court Justices and Formation of Judicial Precedents
最高法院法官的任命和判例的形成
- 批准号:
18K01395 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantitative network analysis of appointment diaries
预约日记的定量网络分析
- 批准号:
ES/R009236/1 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grant
A Study on the Process of Appointment of Principal by Physical Education Teachers and Formation of Management Competence
体育教师校长聘任过程与管理能力形成研究
- 批准号:
16K16538 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Reconstruction of the history of Japanese education through historical clarification of the transition between education at "daigaku" and appointment of government officials in ancient Japan
通过历史澄清古代日本“大学”教育与政府官员任用之间的转变,重建日本教育史
- 批准号:
15K17374 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Appointment Provisioning/Booking Platform
预约提供/预订平台
- 批准号:
486943-2015 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)














{{item.name}}会员




