Measuring the Value of Improving Access to Community Care

衡量改善社区护理服务的价值

基本信息

  • 批准号:
    10847381
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Background: Providing timely access to health care has been a long-standing VA goal that has been re- emphasized by the Commission on Care. To improve access to care, VA implemented the Veterans Choice Program in August 2014, which provides eligible Veterans the option of receiving care from community providers paid for by VA. Currently, there is a substantial gap in scientific evidence on the effect of the Choice Program and other VA community care programs, particularly in regards to the degree the program has improved access to care. More generally, non-VA literature examining the effect of greater provider options has focused on changes in utilization, but has not assessed the value of improved patient choice. The development of measures that capture the value of greater provider options is methodologically challenging because patients’ preferences are not directly observed and value encompasses many dimensions of access (e.g., travel distance, appointment wait times, provider quality, etc.). To address these evidence gaps, we propose the development and examination of new measures capturing the value of provider options to Veterans using state-of-the art econometric methods. Greater scientific evidence to help VA provide enhanced choice for Veterans through the Choice Program and future VA community care programs is consistent with the VHA FY 2018-2019 Operational Plan. This study addresses the ORD-wide Learning Health Care System priority area and HSR&D’s Access and Health Care Systems Change major priority domains. Objectives: The objectives of this study are to: 1) develop new econometric method applications to quantitatively measure the value of greater access to providers from the perspective of Veterans and 2) examine the relative importance of local area and provider characteristics in determining Veterans’ value of having improved access to providers. Methods: This observational study will examine VA administrative data and existing public data characterizing outpatient providers. In Aim 1, we will use VA administrative data to identify: 1) Veterans eligible for the VA Choice Program in 2016, 2) VA and Choice outpatient providers and 3) utilization of outpatient services from VA facilities and through the Choice Program. We will analyze Veterans’ revealed preference for providers using econometric random utility models. These models assume patients select the provider that yields the greatest benefit, given all available options. We will empirically estimate Veterans’ choice of provider within the random utility framework using a nested multinomial logit model (NMNL). We will then use parameter estimates and predictive margins from the NMNL model to calculate the value of greater provider options through the Choice Program. Specifically, econometric models will calculate Veterans’ willingness to pay (WTP), which represents the maximum dollar amount an individual would theoretically pay for greater provider options. In Aim 2, we will apply econometric decomposition methods to models developed in Aim 1 to assess the influence of key provider and local area characteristics in determining value. Notably, we will leverage novel data linkages between VA administrative data and public use data capturing an extensive set of provider characteristics. Statement on Next Steps: We will develop a simulation tool designed for non-researchers that incorporates study results to estimate the value to Veterans of a specified set of provider options (i.e. a community care network). This tool will provide the ability for operational partners to assess the adequacy of community care networks and establish the business case of “what-if” scenarios. Stakeholders will be able to adapt to changing conditions through simulating the hypothetical addition and subtraction of providers within a community care network. This simulation feature will facilitate future analyses to ensure community care networks include high quality providers that best match Veterans’ preferences.
背景:提供及时的医疗保健一直是退伍军人事务部的一个长期目标, 这是护理委员会强调的。为了改善获得护理的机会,VA实施了退伍军人选择 2014年8月的计划,为符合条件的退伍军人提供从社区接受护理的选择 由VA支付的供应商。目前,关于选择的影响,科学证据存在很大差距 计划和其他VA社区护理计划,特别是在该计划的程度方面, 改善获得护理的机会。更一般地说,非VA文献研究了更多供应商选择的影响, 关注的是利用率的变化,但没有评估改善患者选择的价值。的 开发能够捕捉更多供应商选择的价值的度量方法在方法上具有挑战性 因为患者的偏好无法直接观察到,价值包含了访问的许多方面, (e.g.,行进距离、预约等待时间、提供者质量等)。为了弥补这些证据不足,我们 建议制定和审查新的衡量标准,以体现供应商选择的价值, 使用最先进的计量经济学方法的退伍军人。更多的科学证据帮助VA提供增强的 通过选择计划和未来的VA社区护理计划为退伍军人提供的选择是一致的 VHA FY 2018-2019运营计划。本研究探讨了整个职业发展署的学习保健系统 优先领域和HSR&D的访问和医疗保健系统改变主要优先领域。 目的:本研究的目的是:1)开发新的计量经济学方法的应用, 从退伍军人的角度定量衡量更多获得供应商的价值,2) 检查在确定退伍军人的价值,当地和供应商的特点的相对重要性, 改善了与供应商的接触。 方法:这项观察性研究将检查VA管理数据和现有的公共数据, 门诊提供者。在目标1中,我们将使用VA管理数据来确定:1)符合VA条件的退伍军人 2016年选择计划,2)VA和选择门诊提供者,3)门诊服务的利用率, VA设施和通过选择方案。我们将分析退伍军人对供应商的偏好 使用计量经济学随机效用模型。这些模型假设患者选择提供者, 最大的好处,考虑到所有可用的选项。我们将根据经验估计退伍军人在 随机效用框架使用嵌套多项logit模型(NMNL)。我们将使用参数 NMNL模型的估计和预测利润,以计算更大供应商选项的价值 通过选择方案。具体来说,计量经济学模型将计算退伍军人的支付意愿, (WTP),这代表了理论上个人为更大的供应商支付的最高美元金额 选项.在目标2中,我们将对目标1中开发的模型应用计量经济学分解方法, 关键供应商和当地特征在确定价值方面的影响。值得注意的是,我们将利用 VA行政数据和公共使用数据之间的新型数据链接, 特色 关于下一步的声明:我们将开发一个为非研究人员设计的模拟工具, 研究结果,以估计一组指定的提供者选项(即社区护理)对退伍军人的价值 网络)。这一工具将使业务伙伴能够评估社区护理的充分性 网络,并建立“假设”方案的业务案例。利益相关者将能够适应变化 通过模拟社区护理中提供者的假设增加和减少, 网络这一模拟功能将有助于未来的分析,以确保社区护理网络包括高 最符合退伍军人偏好的优质供应商。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How Did Veterans' Reliance on Veterans Health Administration Outpatient Care Change After Expansion of the Veterans Community Care Program?
  • DOI:
    10.1097/mlr.0000000000001764
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Sterling, Ryan A.;Liu, Chuan-Fen;Wong, Edwin S.
  • 通讯作者:
    Wong, Edwin S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edwin S. Wong其他文献

Factors Associated with Use of Telemedicine Among American Indian and Alaska Native Medicaid Beneficiaries
  • DOI:
    10.1007/s11606-025-09355-3
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Edwin S. Wong;Anna M. Morenz;Amy Hsu;Jason F. Deen;Jubi Y. L. Lin;Joshua M. Liao;Ashok Reddy
  • 通讯作者:
    Ashok Reddy
Impact of VHA's primary care intensive management program on dual system use
  • DOI:
    10.1016/j.hjdsi.2020.100450
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Edwin S. Wong;Rong Guo;Jean Yoon;Donna M. Zulman;Steven M. Asch;Michael K. Ong;Evelyn T. Chang
  • 通讯作者:
    Evelyn T. Chang
Disparities in telemedicine use among Native Hawaiian and Pacific Islander individuals insured through Medicaid
通过医疗补助投保的夏威夷原住民和太平洋岛民在远程医疗使用方面的差异
  • DOI:
    10.1093/haschl/qxae057
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna M. Morenz;Ashok Reddy;Amy Hsu;Anh Le;Edwin S. Wong;Joshua M. Liao
  • 通讯作者:
    Joshua M. Liao
Correction: Design and analysis of outcomes following SARS-CoV-2 infection in veterans
  • DOI:
    10.1186/s12874-023-02021-4
  • 发表时间:
    2023-08-25
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Valerie A. Smith;Theodore S. Z. Berkowitz;Paul Hebert;Edwin S. Wong;Meike Niederhausen;John A. Pura;Kristin Berry;Pamela Green;Anna Korpak;Alexandra Fox;Aaron Baraff;Alex Hickok;Troy A Shahoumian;Amy S.B. Bohnert;Denise M. Hynes;Edward J. Boyko;George N. Ioannou;Theodore J. Iwashyna;C. Barrett Bowling;Ann M. O’Hare;Matthew L. Maciejewski
  • 通讯作者:
    Matthew L. Maciejewski
Impact of Home Telehealth Expansion on High-Cost Utilization Among Veterans Health Administration Patients with Diabetes
  • DOI:
    10.1007/s11606-024-09169-9
  • 发表时间:
    2024-10-31
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Ashok Reddy;Eric J. Gunnink;Jorge Rojas;Karin Nelson;Edwin S. Wong
  • 通讯作者:
    Edwin S. Wong

Edwin S. Wong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edwin S. Wong', 18)}}的其他基金

Measuring the Value of Improving Access to Community Care
衡量改善社区护理服务的价值
  • 批准号:
    10668937
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Identifying Value-Driven Approaches to Strengthening the VA Physician Workforce
确定以价值驱动的方法来加强 VA 医生队伍
  • 批准号:
    10186500
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Identifying Value-Driven Approaches to Strengthening the VA Physician Workforce
确定以价值驱动的方法来加强 VA 医生队伍
  • 批准号:
    9691048
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Identifying Value-Driven Approaches to Strengthening the VA Physician Workforce
确定以价值驱动的方法来加强 VA 医生队伍
  • 批准号:
    10308422
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:

相似海外基金

AI-powered digital healthcare platform that delivers health benefits to Bengali speakers in the UK through voice-driven remote medical triaging, appointment booking and self-care at home.
由人工智能驱动的数字医疗平台,通过语音驱动的远程医疗分类、预约和在家自我护理,为英国的孟加拉语使用者提供健康益处。
  • 批准号:
    10043942
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
NHS Appointment Recovery Project
NHS 预约恢复项目
  • 批准号:
    62930
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Feasibility Studies
An Innovative, Automated, Machine Learning Appointment, Logistics and Communication Platform for Mobile Service Provider SMEs that can incorporate
为移动服务提供商中小企业提供创新、自动化、机器学习预约、物流和通信平台,可将
  • 批准号:
    86195
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Factors Promoting and Inhibiting the Appointment of Women in the Public Sector
促进和抑制妇女在公共部门任职的因素
  • 批准号:
    20H01456
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Primary Care Online Appointment Scheduling Platform for Emergency Departments: Improving the Care Transition between Emergency and Primary Care
急诊科初级保健在线预约安排平台:改善急诊和初级保健之间的护理过渡
  • 批准号:
    382187
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Appointment of Supreme Court Justices and Formation of Judicial Precedents
最高法院法官的任命和判例的形成
  • 批准号:
    18K01395
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantitative network analysis of appointment diaries
预约日记的定量网络分析
  • 批准号:
    ES/R009236/1
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grant
A Study on the Process of Appointment of Principal by Physical Education Teachers and Formation of Management Competence
体育教师校长聘任过程与管理能力形成研究
  • 批准号:
    16K16538
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Reconstruction of the history of Japanese education through historical clarification of the transition between education at "daigaku" and appointment of government officials in ancient Japan
通过历史澄清古代日本“大学”教育与政府官员任用之间的转变,重建日本教育史
  • 批准号:
    15K17374
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Appointment Provisioning/Booking Platform
预约提供/预订平台
  • 批准号:
    486943-2015
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了