Novel Biomarkers for Post-Liver Transplant NASH Fibrosis
肝移植后 NASH 纤维化的新型生物标志物
基本信息
- 批准号:10667657
- 负责人:
- 金额:$ 69.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-18 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAlgorithmsAreaBiologicalBiological MarkersBiologyCardiovascular DiseasesCellsChronicCirrhosisClinical DataCollagenDataDevelopmentDiseaseExtracellular MatrixExtracellular Matrix ProteinsFibrosisGenerationsGoalsGraphHealthHepaticHomeostasisHumanIncidenceIndividualLeadLifestyle TherapyLinkLiquid substanceLiver FibrosisMatrix MetalloproteinasesMediatingMedicalMethodsModelingMolecularMolecular WeightMultivariate AnalysisNeoplasm MetastasisOutcomePatient riskPatient-Focused OutcomesPatientsPeptide FragmentsPeptide HydrolasesPeptide SynthesisPeptidesPharmacotherapyPlasmaPopulationPredictive ValuePreventionProductionPrognosisPrognostic MarkerProtease InhibitorProtein FragmentProteinsRecurrenceRiskRoleSignal TransductionSteatohepatitisTestingTimeTissuesWorkacute liver injuryalgorithm developmentbiomarker discoverybiomarker identificationclinically actionableclinically significantcohortdesigneffective therapyend stage liver diseasefatty liver diseasegraph learningindividual patientinsightinterestlearning algorithmliver developmentliver injuryliver transplantationmachine learning methodminimally invasivemouse modelmultimodal datanew therapeutic targetnonalcoholic steatohepatitisnovelnovel markerorgan injuryoutcome predictionpost-transplantpredictive modelingpredictive toolsprofiles in patientsprospectiverisk predictionrisk stratificationsimple steatosistargeted treatmenttool
项目摘要
Our overarching goal is to develop minimally invasive approaches to better predict outcome and novel
mechanisms in post-liver transplant (LT) NASH fibrosis. Although LT is an effective therapy for NAFLD cirrhosis,
the risk of post-transplant NAFLD is alarmingly high, particularly for recurrent non-alcoholic steatohepatitis
(NASH) with an incidence of up to 70% at 5 years. Effective approaches to predict risk hamper the treatment
and prevention of post-LT NASH fibrosis. The hepatic extracellular matrix (ECM) responds dynamically to organ
injury and ECM turnover increases; we propose to take advantage of this to develop new biomarkers for post-
LT NASH fibrosis. The peptidome, low molecular weight peptides in biologic fluids, includes not only synthesized
peptides, but fragments of degraded proteins (i.e., ‘degradome’). We hypothesize that the ECM degradome
in plasma will yield new biomarkers to predict outcome and mechanisms in post-LT NASH fibrosis. We
will test this hypothesis via the following Specific Aims: 1). To identify key changes in the peptidome of post-
LT NASH with fibrosis.. Unbiased peptidomics and multivariate analyses will identify degradomic features
independently linked to prognosis. Protease activity that could produce significantly changed peptides will be
predicted using Proteasix. We will also determine the mechanistic role of ECM turnover in the in parallel
established NAFLD/NASH. 2) To develop clinically-actionable predictive models of NASH and fibrosis post-LT.
Whereas we expect the results of Aim 1 to establish that the peptidome profile in patients correlates with overall
outcome, biomarkers alone are often insufficient to accurately predict individual patient outcome. We will
therefore employ machine learning methods like probabilistic graphical models (PGMs) over mixed data types
to integrate peptidomic and individual patient clinical data, into a single probabilistic graphical framework. The
resulting graphs will then be used to infer causal interactions between variables, select informative biomarkers
that will more specifically predict the outcome, and gain new mechanistic insight into the biology of post-LT NASH
(hypothesis generation). 3) To validate the use of the peptidome as a predictive tool for determining post-LT
NASH fibrosis. Using a large prospectively-designed patient cohort with established outcomes, we will test the
ability of the algorithms and biomarkers generated in this study to predict outcome. The successful completion
of the proposed work will produce significant results at various levels: (1) Biomarker discovery: we will identify
biomarkers and conditional biomarkers. (2) Mechanistic understanding of post-LT NASH fibrosis: our models will
generate hypotheses about the interactions between variables at different scales (molecular, individual) that will
provide insights on the proteins that are involved and potentially new druggable targets. (3) Algorithm
development: through this project we will extend our mixed data graph learning algorithms to include time-course
variables to be validated using a large prospective LT cohort.
我们的总体目标是开发最低侵入性的方法,以更好地预测结果和新颖
肝后移植(LT)NASH纤维化中的机制。尽管LT是NAFLD肝硬化的有效疗法,但
移植后NAFLD的风险令人震惊,尤其是反复出现的非酒精性脂肪性肝炎
(NASH)在5年时的事件高达70%。有效预测风险妨碍治疗的方法
并预防LT纳什纤维化后。肝细胞外基质(ECM)动态响应以组织
受伤和ECM周转率增加;我们建议利用这一优势来开发新的生物标志物来供邮政
LT NASH纤维化。辣妹低分子量在生物学流体中的宠物,不仅包括合成的
肽,但降解蛋白质的碎片(即“降解组”)。我们假设ECM降解组
在血浆中,将产生新的生物标志物,以预测LT纳什纤维化后的结果和机制。我们
将通过以下特定目的检验该假设:1)。确定后辣椒的关键变化 -
LT NASH带有纤维化。无偏的肽组学和多元分析将识别降解特征
与预后独立联系。可能会产生明显变化宠物的蛋白酶活动将是
使用蛋白酶预测。我们还将确定ECM离职率在同行中的机理作用
已建立的NAFLD/NASH。 2)在LT后开发NASH和纤维化的临床可行预测模型。
而我们期望AIM 1的结果确定患者的辣妹概况与整体相关
结果,仅生物标志物通常不足以准确预测个体的患者结果。我们将
因此,员工机器学习方法等混合数据类型等概率图形模型(PGM)
将肽组和个体患者临床数据整合到一个概率图形框架中。这
然后,结果图将用于推断变量之间的因果相互作用,选择信息性的生物标志物
这将更具体地预测结果,并获得对LT NASH后生物学的新机械洞察力
(假设产生)。 3)验证使用辣妹作为确定LT后的预测工具
纳什纤维化。使用具有既定结果的大型前瞻性设计的患者队列,我们将测试
本研究中产生的算法和生物标志物的能力预测结果。成功完成
拟议的工作将在不同层面产生重大结果:(1)生物标志物发现:我们将确定
生物标志物和有条件的生物标志物。 (2)对LT后NASH纤维化的机械理解:我们的模型将
产生关于不同尺度(分子,个体)变量之间相互作用的假设
提供有关所涉及的蛋白质和潜在可吸毒靶标的蛋白质的见解。 (3)算法
开发:通过这个项目,我们将扩展混合数据图学习算法以包括时间表
使用大型前瞻性LT队列验证的变量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gavin E Arteel其他文献
Gavin E Arteel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gavin E Arteel', 18)}}的其他基金
The role of matrix-bound microvesicles in alcohol-related liver disease
基质结合微泡在酒精相关性肝病中的作用
- 批准号:
10582800 - 财政年份:2023
- 资助金额:
$ 69.77万 - 项目类别:
Novel Biomarkers for Post-Liver Transplant NASH Fibrosis
肝移植后 NASH 纤维化的新型生物标志物
- 批准号:
10518842 - 财政年份:2022
- 资助金额:
$ 69.77万 - 项目类别:
Liver-enriched Transcription Factors as Prognostic Markers and Therapeutic Targets in Alcoholic Hepatitis
肝脏富集转录因子作为酒精性肝炎的预后标志物和治疗靶点
- 批准号:
10428560 - 财政年份:2018
- 资助金额:
$ 69.77万 - 项目类别:
Role of ECM and inflammatory remodeling in alcohol-induced liver and lung damage-diversity supplement
ECM和炎症重塑在酒精性肝肺损伤中的作用-多样性补充
- 批准号:
9121282 - 财政年份:2015
- 资助金额:
$ 69.77万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 69.77万 - 项目类别:
Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
- 批准号:
10721762 - 财政年份:2023
- 资助金额:
$ 69.77万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 69.77万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 69.77万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 69.77万 - 项目类别: