Novel Biomarkers for Post-Liver Transplant NASH Fibrosis
肝移植后 NASH 纤维化的新型生物标志物
基本信息
- 批准号:10518842
- 负责人:
- 金额:$ 71.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-18 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaBiologicalBiological MarkersBiologyCardiovascular DiseasesCellsChronicCirrhosisClinical DataCollagenDataDevelopmentDiseaseExtracellular MatrixExtracellular Matrix ProteinsFibrosisGenerationsGoalsGraphHealthHepaticHomeostasisHumanIncidenceIndividualLeadLifestyle TherapyLinkLiquid substanceLiver FibrosisMatrix MetalloproteinasesMediatingMedicalMethodsModelingMolecularMolecular WeightMultivariate AnalysisNeoplasm MetastasisOutcomePatient riskPatient-Focused OutcomesPatientsPeptide FragmentsPeptide HydrolasesPeptidesPharmacotherapyPlasmaPopulationPredictive ValuePreventionProductionPrognosisPrognostic MarkerProtease InhibitorProtein FragmentProteinsRecurrenceRiskRoleSignal TransductionSteatohepatitisSurrogate MarkersTestingTimeTissuesWorkacute liver injuryalgorithm developmentbasebiomarker discoveryclinically actionableclinically significantcohortdesigneffective therapyend stage liver diseasefatty liver diseasegraph learningindividual patientinsightinterestlearning algorithmliver developmentliver injuryliver transplantationmachine learning methodminimally invasivemouse modelmultimodal datanew therapeutic targetnon-alcoholic fatty liver diseasenonalcoholic steatohepatitisnovelnovel markerorgan injuryoutcome predictionpost-transplantpredictive modelingpredictive toolsprofiles in patientsprospectiverisk stratificationsimple steatosistargeted treatmenttool
项目摘要
Our overarching goal is to develop minimally invasive approaches to better predict outcome and novel
mechanisms in post-liver transplant (LT) NASH fibrosis. Although LT is an effective therapy for NAFLD cirrhosis,
the risk of post-transplant NAFLD is alarmingly high, particularly for recurrent non-alcoholic steatohepatitis
(NASH) with an incidence of up to 70% at 5 years. Effective approaches to predict risk hamper the treatment
and prevention of post-LT NASH fibrosis. The hepatic extracellular matrix (ECM) responds dynamically to organ
injury and ECM turnover increases; we propose to take advantage of this to develop new biomarkers for post-
LT NASH fibrosis. The peptidome, low molecular weight peptides in biologic fluids, includes not only synthesized
peptides, but fragments of degraded proteins (i.e., ‘degradome’). We hypothesize that the ECM degradome
in plasma will yield new biomarkers to predict outcome and mechanisms in post-LT NASH fibrosis. We
will test this hypothesis via the following Specific Aims: 1). To identify key changes in the peptidome of post-
LT NASH with fibrosis.. Unbiased peptidomics and multivariate analyses will identify degradomic features
independently linked to prognosis. Protease activity that could produce significantly changed peptides will be
predicted using Proteasix. We will also determine the mechanistic role of ECM turnover in the in parallel
established NAFLD/NASH. 2) To develop clinically-actionable predictive models of NASH and fibrosis post-LT.
Whereas we expect the results of Aim 1 to establish that the peptidome profile in patients correlates with overall
outcome, biomarkers alone are often insufficient to accurately predict individual patient outcome. We will
therefore employ machine learning methods like probabilistic graphical models (PGMs) over mixed data types
to integrate peptidomic and individual patient clinical data, into a single probabilistic graphical framework. The
resulting graphs will then be used to infer causal interactions between variables, select informative biomarkers
that will more specifically predict the outcome, and gain new mechanistic insight into the biology of post-LT NASH
(hypothesis generation). 3) To validate the use of the peptidome as a predictive tool for determining post-LT
NASH fibrosis. Using a large prospectively-designed patient cohort with established outcomes, we will test the
ability of the algorithms and biomarkers generated in this study to predict outcome. The successful completion
of the proposed work will produce significant results at various levels: (1) Biomarker discovery: we will identify
biomarkers and conditional biomarkers. (2) Mechanistic understanding of post-LT NASH fibrosis: our models will
generate hypotheses about the interactions between variables at different scales (molecular, individual) that will
provide insights on the proteins that are involved and potentially new druggable targets. (3) Algorithm
development: through this project we will extend our mixed data graph learning algorithms to include time-course
variables to be validated using a large prospective LT cohort.
我们的首要目标是开发微创方法,以更好地预测结果和新的
肝移植(LT)后NASH纤维化的机制。虽然LT是NAFLD肝硬化的有效治疗方法,
移植后NAFLD风险高得惊人,特别是复发性非酒精性脂肪性肝炎
(NASH),5年时发病率高达70%。有效的风险预测方法阻碍了治疗
和预防LT后NASH纤维化。肝细胞外基质(ECM)对器官的动态反应
损伤和ECM周转增加;我们建议利用这一点来开发新的生物标志物,
LT NASH纤维化。生物体液中的低分子量肽不仅包括合成的肽,
肽,但降解蛋白质的片段(即,'degradome')。我们假设细胞外基质降解了
将产生新的生物标志物来预测LT后NASH纤维化的结果和机制。我们
我们将通过以下具体目标来检验这一假设:1)。为了确定后-
LT NASH伴纤维化无偏肽组学和多变量分析将识别降解组特征
与预后独立相关。蛋白酶活性,可以产生显着改变的肽将是
使用Proteasix预测。我们还将确定ECM周转的机制作用,
建立NAFLD/NASH。2)开发可用于临床的肝移植后NASH和纤维化预测模型。
然而,我们期望目标1的结果确定患者中的肽组谱与总体相关性。
然而,单独的生物标志物通常不足以准确地预测个体患者的结果。我们将
因此,在混合数据类型上使用概率图模型(PGM)等机器学习方法
将肽组和个体患者临床数据整合到单个概率图形框架中。的
然后,将使用所得图推断变量之间的因果相互作用,选择信息性生物标志物,
这将更具体地预测结果,并获得对LT后NASH生物学的新机制见解
(假设生成)。3)验证肽组作为预测工具用于确定LT后
NASH纤维化。我们将使用一个具有既定结局的大型前瞻性设计患者队列,
本研究中生成的算法和生物标志物预测结果的能力。圆满完成
的拟议工作将产生重大成果,在各个层面:(1)生物标志物的发现:我们将确定
生物标志物和条件性生物标志物。(2)LT后NASH纤维化的机制理解:我们的模型将
生成关于不同尺度(分子,个体)变量之间相互作用的假设,
提供了有关蛋白质和潜在的新药物靶点的见解。(3)算法
开发:通过这个项目,我们将扩展我们的混合数据图学习算法,包括时间过程
使用大型前瞻性LT队列验证变量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gavin E Arteel其他文献
Gavin E Arteel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gavin E Arteel', 18)}}的其他基金
The role of matrix-bound microvesicles in alcohol-related liver disease
基质结合微泡在酒精相关性肝病中的作用
- 批准号:
10582800 - 财政年份:2023
- 资助金额:
$ 71.25万 - 项目类别:
Novel Biomarkers for Post-Liver Transplant NASH Fibrosis
肝移植后 NASH 纤维化的新型生物标志物
- 批准号:
10667657 - 财政年份:2022
- 资助金额:
$ 71.25万 - 项目类别:
Liver-enriched Transcription Factors as Prognostic Markers and Therapeutic Targets in Alcoholic Hepatitis
肝脏富集转录因子作为酒精性肝炎的预后标志物和治疗靶点
- 批准号:
10428560 - 财政年份:2018
- 资助金额:
$ 71.25万 - 项目类别:
Role of ECM and inflammatory remodeling in alcohol-induced liver and lung damage-diversity supplement
ECM和炎症重塑在酒精性肝肺损伤中的作用-多样性补充
- 批准号:
9121282 - 财政年份:2015
- 资助金额:
$ 71.25万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 71.25万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 71.25万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 71.25万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 71.25万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 71.25万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 71.25万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 71.25万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 71.25万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 71.25万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 71.25万 - 项目类别:
Standard Grant