Mechanism of Viral Genome Delivery into Cells
病毒基因组传递至细胞的机制
基本信息
- 批准号:10668228
- 负责人:
- 金额:$ 57.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:BacteriaBacteriophagesBiologicalBiological ProcessBiologyBiotechnologyCell NucleusCellsComplexCreativenessCryoelectron MicroscopyDNADevelopmentEukaryotic CellFunding MechanismsGenomeGram-Negative BacteriaGuanosine Triphosphate PhosphohydrolasesHerpesviridaeHumanImmune systemImportinsInjectionsLaboratoriesLiteratureMediatingMedicineMembraneMembrane ProteinsMolecularMolecular MachinesNuclear ImportNuclear Pore ComplexOrganellesPrincipal InvestigatorProcessProtein BiochemistryPublicationsRegulationResearchRunningScienceSignal TransductionStructureViralViral GenomeVirulenceVirusVisualizationWorkX-Ray Crystallographycell envelopegenetic informationinterestmacromoleculenanomachinenovel therapeutic interventionnucleocytoplasmic transportpressureprogramsreceptorstructural biology
项目摘要
Project Summary
Nearly 120 years since the discovery of the first virus, our understanding of how viruses deliver genomes into
cells overcoming the complexity of biological membranes remains limited. While a vast scientific literature
exists on viral surface proteins and their interaction with host receptors, and the immune system, little
emphasis has been devoted to studying the delivery of entire viral genomes into cells. For instance, how do
bacteriophages eject DNA through the cell envelope of Gram-negative bacteria? Or, in humans, how do
herpesviruses deliver ~200 kb genome through the Nuclear Pore Complex (NPC) into the cell nucleus?
For a quarter of a century, first as a trainee (1995-2003), and since 2004 as a principal investigator, I have
investigated the mechanisms of nucleocytoplasmic transport and viral genome packaging. My work has
resulted in close to 85 publications that contributed to elucidating the atomic structure and regulation of crucial
factors implicated in nuclear import, and viral genome packaging. In this R35, I propose to combine the study
of these two seemingly distinct biological processes by focusing on the mechanisms of viral genome delivery
into living cells. Specifically, I will ask two biological questions that seek to compare and contrast how simple
bacterial viruses (or bacteriophages) eject their DNA into bacteria with how Herpesviruses deliver their
complex genomes into the nucleus of eukaryotic cells. The first question explores how bacteriophages
eject ~45 kb genomes through the cell envelope of gram-negative bacteria. Long-thought to be a simple
pressure-driven injection, this process uses a virus-encoded nanomachine, which we have begun to study in
my laboratory. The second question explores how Herpesviruses deliver their large genome through the
Nuclear Pore Complex (NPC) of human cells into the cell nucleus. This is a signal- and energy-mediated
process that uses host importins and the GTPase Ran, exploiting the cellular transport machinery to promote
entry of an exogenous genome into the nucleus. Overall, understanding how viruses transfer genetic
information through biological membranes into cells and organelles is vital for deciphering the molecular
mechanisms of virulence as well as the development of novel therapeutic approaches. The common
denominator of this R35 lies in our interest in the structure and transport mechanisms of biological
macromolecules. Our research approach marries established sciences like protein biochemistry and X-ray
crystallography with the power of cryo-electron microscopy (cryo-EM) to visualize biological macromolecules in
near-native conditions. We believe that this R35 MIRA funding mechanism will fuel the creative and diligent
pursuit of answers to the questions we pose, permitting our research program to achieve significant
advancements in structural biology.
项目摘要
自发现第一种病毒以来近120年,我们对病毒如何将基因组传递到
细胞克服生物膜复杂性的能力仍然有限。虽然大量的科学文献
存在于病毒表面蛋白及其与宿主受体和免疫系统的相互作用上,
重点一直致力于研究将整个病毒基因组递送到细胞中。例如,如何
噬菌体通过革兰氏阴性菌的细胞膜排出DNA?或者,在人类中,
疱疹病毒通过核孔复合体(NPC)将~200 kb的基因组传递到细胞核中?
在四分之一个世纪里,我先是作为一名实习生(1995-2003),从2004年开始担任首席研究员,
研究了核质转运和病毒基因组包装的机制。我的工作
导致近85篇出版物,有助于阐明原子结构和关键的调控,
与核输入和病毒基因组包装有关的因素。在本R35中,我建议将研究联合收割机
这两个看似不同的生物过程,通过关注病毒基因组传递的机制,
转化成活细胞具体来说,我将提出两个生物学问题,寻求比较和对比如何简单
细菌病毒(或噬菌体)将它们的DNA喷射到细菌中,
将复杂的基因组导入真核细胞的细胞核。第一个问题探讨了噬菌体
通过革兰氏阴性菌的细胞被膜排出约45 kb的基因组。长期以来,
压力驱动注射,这个过程使用了一种病毒编码的纳米机器,我们已经开始研究,
我的实验室第二个问题探讨了疱疹病毒如何将其庞大的基因组通过
核孔复合体(NPC)将人体细胞的细胞核内。这是一种信号和能量介导的
一种利用宿主输入蛋白和GTCRan的过程,利用细胞转运机制促进
外源基因组进入细胞核。总的来说,了解病毒如何转移基因
通过生物膜进入细胞和细胞器的信息对于破译分子
毒力机制以及新型治疗方法的发展。共同
这个R35的分母在于我们对生物的结构和运输机制的兴趣。
大分子我们的研究方法结合了蛋白质生物化学和X射线等成熟科学
晶体学结合冷冻电子显微镜(cryo-EM)的功能,可视化生物大分子
接近自然的条件。我们相信,这R35 MIRA的资金机制将燃料的创造性和勤奋
追求我们提出的问题的答案,使我们的研究计划,以实现重大
结构生物学的进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gino Cingolani其他文献
Gino Cingolani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gino Cingolani', 18)}}的其他基金
A humidity-controlled system for reprodicable vitrification of macromolecules
用于大分子可重复玻璃化的湿度控制系统
- 批准号:
10581231 - 财政年份:2021
- 资助金额:
$ 57.66万 - 项目类别:
Regulation of Nuclear Import Through Importin Alpha Isoforms
通过导入α亚型来调节核进口
- 批准号:
10083745 - 财政年份:2018
- 资助金额:
$ 57.66万 - 项目类别:
A NEW HYBRID DIFFRACTOMETER FOR MACROMOLECULAR CRYSTALLOGRAPHY AND SAXS AT TJU
天津大学用于高分子晶体学和 SAXS 的新型混合衍射仪
- 批准号:
8639253 - 财政年份:2014
- 资助金额:
$ 57.66万 - 项目类别:
Multisubunit viral ATPases that couple ATP-hydrolysis to genome translocation
将 ATP 水解与基因组易位耦合的多亚基病毒 ATP 酶
- 批准号:
8238803 - 财政年份:2012
- 资助金额:
$ 57.66万 - 项目类别:
相似海外基金
Engineered bacteriophages as biosensors for the rapid diagnosis of bacterial infection
工程噬菌体作为生物传感器,用于快速诊断细菌感染
- 批准号:
2879026 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别:
Studentship
Designable, Orientable, and Responsive Photonic Crystals Based on Bacteriophages
基于噬菌体的可设计、可定向、响应灵敏的光子晶体
- 批准号:
23KJ0533 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别:
Grant-in-Aid for JSPS Fellows
From cells to communities: The multi-scale impacts of bacteriophages in the gut microbiome
从细胞到群落:噬菌体对肠道微生物组的多尺度影响
- 批准号:
10714109 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别:
Bacteriophages in the ageing gut as targeted therapeutics
老化肠道中的噬菌体作为靶向治疗
- 批准号:
2893971 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别:
Studentship
AI mining of the bacteriophages metagenome
噬菌体宏基因组的人工智能挖掘
- 批准号:
2890966 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别:
Studentship
Demystifying virus-host interactions in Clostridioides difficile through genetic engineering of bacteriophages and the bacterial S-layer
通过噬菌体和细菌 S 层的基因工程揭开艰难梭菌中病毒与宿主相互作用的神秘面纱
- 批准号:
494839 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别:
Operating Grants
Understanding cell surface recognition by bacteriophages to engineer novel therapeutics targeting Enterococcus cecorum, an emerging poultry pathogen
了解噬菌体的细胞表面识别,以设计针对盲肠肠球菌(一种新兴的家禽病原体)的新型疗法
- 批准号:
2881108 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别:
Studentship
Bacteriophages against surgical site infections
噬菌体对抗手术部位感染
- 批准号:
10070793 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别:
Collaborative R&D
Involvement of Bacteriophages in the Formation of Oral Bacterial Flora by Phageome Analysis
通过噬菌体分析了解噬菌体参与口腔细菌菌群的形成
- 批准号:
23H03074 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bacteriophages as key players in bacterial adaptation to the human gut
噬菌体是细菌适应人类肠道的关键参与者
- 批准号:
2748665 - 财政年份:2022
- 资助金额:
$ 57.66万 - 项目类别:
Studentship