AgRP neurons: circadian control and interactions with the HPA axis
AgRP 神经元:昼夜节律控制以及与 HPA 轴的相互作用
基本信息
- 批准号:10668332
- 负责人:
- 金额:$ 50.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdrenal GlandsAutomobile DrivingBloodBody TemperatureBrainChickensChronic stressCircadian RhythmsCorticosteroneCorticotropinCuesCushing SyndromeDarknessDiseaseDisinhibitionEatingElectrophysiology (science)Energy MetabolismEnteral FeedingFastingFeedbackFeeding behaviorsFoodFutureGenetic TranscriptionGlucocorticoidsGrantHormonesHungerHypothalamic structureJet Lag SyndromeLightLinkMetabolicMetabolic DiseasesMonitorMotivationMotor ActivityMusNeuronsOutcomePhasePhysiologicalPituitary GlandPlayProcessRegulationReportingRoleScheduleSensorySignal TransductionStressSystemTimeWorkbrain basedcircadiancircadian regulationeggenergy balanceepigenomicsfallsfeedingfollow-upin vivoincreased appetiteinhibitory neuroninsightmental stateneuralneural circuitoptogeneticspreventresponserestoration
项目摘要
AgRP neurons: circadian control and interactions with the HPA axis
AgRP neurons play a key role driving feeding. They are activated by feedback signals reporting low energy
stores, and their activation promotes the seeking and eating of food. Remarkably, they are also regulated by
feedforward cues that anticipate future needs and outcomes. The central role of AgRP neurons is further
highlighted by their ability to cause many of the adaptive physiologic responses to fasting. Given the primacy
of AgRP neurons, it is important that we understand how they are regulated, what processes they control, and
how they bring about such control. With this in mind, this grant pursues the following two Aims:
Aim 1: To study SCN / circadian feedforward activation of AgRP neurons and feeding. In this Aim, we
extend the concept of feedforward anticipatory regulation by determining if the SCN engages AgRP neurons to
proactively schedule daily feeding and prevent future energy deficits. While it is known that feeding is under
circadian control, and that this is important because mis-timed feeding causes disease, it is entirely unknown
how the circadian system does this. To investigate SCN control of AgRP neurons, we have developed the
unique ability to continuously monitor AgRP neuron activity in vivo over many days, while simultaneously
monitoring rhythms in feeding, body temperature (Tb), locomotor activity (LMA), and in other neurons. Using
this approach, we have found that: i) AgRP neuron activity oscillates with a 24 hr cycle (peaking later in the
day, falling later in the night) in both light/dark and constant darkness conditions, ii) that peaks and troughs in
AgRP neuron activity are in-phase with SCN neurons, and iii) that with “jet lag” (6 hr advancement of the light
cycle), the AgRP neuron rhythm re-entrains gradually over 8 days in parallel with rhythms in feeding, Tb and
LMA. Based on this and optogenetic stimulation studies, we propose that the SCN, by inhibiting an intervening
GABAergic neuron, activates (disinhibits) AgRP neurons, and that this causes circadian control of feeding.
Aim 2: To investigate reciprocal interactions between AgRP neurons and the HPA axis. In this Aim, we
examine reciprocal interactions between AgRP neurons and the HPA axis. First, we follow up on our discovery
that corticosterone directly activates AgRP neurons by establishing the electrophysiologic, transcriptional and
epigenomic mechanism for this activation. Also, we determine if activation of AgRP neurons by corticosterone
causes the metabolic consequences of Cushing’s syndrome and chronic stress. Second, we extend the role of
AgRP neurons in causing brain-based adaptations to fasting by establishing their role in driving the HPA axis.
We have discovered that AgRP neurons potently activate PVHCrh neurons and the HPA axis, and we propose
that they do this by inhibiting GABAergic “gateway” neurons that connect AgRP neurons to PVH-Crh neurons.
Finally, linking Aims 1 and 2, we simultaneously assess rhythms in AgRP and PVH-Crh neurons, and
investigate if SCN regulation of AgRP neurons drives circadian control of the HPA axis, or vice versa.
AgRP神经元:昼夜节律控制及其与HPA轴的相互作用
AgRP神经元在驱动摄食方面起着关键作用。它们由报告低能量的反馈信号激活
它们的激活促进了人们对食物的寻找和进食。值得注意的是,它们也受到
预测未来需求和结果的前馈提示。AgRP神经元的中心作用是进一步
突出的是它们有能力引起对禁食的许多适应性生理反应。鉴于它的首要地位
对于AgRP神经元,重要的是我们了解它们是如何调节的,它们控制着什么过程,以及
他们是如何实现这种控制的。有鉴于此,这笔赠款追求以下两个目标:
目的1:研究SCN/AgRP神经元的昼夜前馈激活和摄食。为了实现这一目标,我们
通过确定SCN是否与AgRP神经元接触来扩展前馈预期调控的概念
主动安排每日喂养计划,防止未来的能量不足。虽然我们知道进食是在
昼夜节律控制,这一点很重要,因为不当的喂养会导致疾病,这是完全未知的
生物钟系统是如何做到这一点的。为了研究SCN对AgRP神经元的控制,我们开发了
独一无二的能力,可连续监测体内多天的AgRP神经元活动,同时
监测摄食、体温(TB)、运动活动(LMA)和其他神经元的节律。vbl.使用
通过这种方法,我们发现:i)AgRP神经元的活动以24小时为周期振荡(在
白天,在晚上晚些时候落下)在明/暗和持续的黑暗条件下,ii)在
AgRP神经元的活动与SCN神经元同相,以及iii)与“时差”(光的提前6小时)同步
周期),AgRP神经元节律在8天内逐渐重新进入,与摄食、TB和
LMA。基于这一点和光遗传刺激的研究,我们提出了SCN,通过抑制一种干预
GABA能神经元激活(去抑制)AgRP神经元,从而引起摄食的昼夜节律控制。
目的2:研究AgRP神经元与HPA轴之间的相互作用。为了实现这一目标,我们
研究AgRP神经元和HPA轴之间的相互作用。首先,我们跟进我们的发现
皮质酮直接激活AgRP神经元是通过建立电生理的、转录的和
这种激活的表观基因组机制。此外,我们还确定了皮质酮是否激活了AgRP神经元
导致库欣综合症和慢性应激的代谢后果。第二,我们扩大了
AgRP神经元通过确定它们在驱动HPA轴中的作用而导致基于大脑的禁食适应。
我们已经发现AgRP神经元能够有效地激活PVHCrh神经元和HPA轴,我们提出
这是通过抑制连接AgRP神经元和PVH-CRH神经元的GABA能“网关”神经元来实现的。
最后,连接目标1和2,我们同时评估了AgRP和PVH-CRH神经元的节律,以及
研究SCN对AgRP神经元的调节是否驱动HPA轴的昼夜节律控制,或者相反。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRADFORD B LOWELL其他文献
BRADFORD B LOWELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRADFORD B LOWELL', 18)}}的其他基金
Feedforward Activation of AgRP Neurons and Hunger
AgRP 神经元的前馈激活和饥饿
- 批准号:
10732358 - 财政年份:2023
- 资助金额:
$ 50.56万 - 项目类别:
Glutamatergic Neurons in the Arcuate Nucleus (ARC) and Regulation of Satiety
弓状核 (ARC) 中的谷氨酸能神经元与饱腹感的调节
- 批准号:
9353418 - 财政年份:2016
- 资助金额:
$ 50.56万 - 项目类别:
AGRP NEURONS. NMDARs, Spines, Source of Excitatory Input and Downstream Effectors
AGRP 神经元。
- 批准号:
8479355 - 财政年份:2012
- 资助金额:
$ 50.56万 - 项目类别:
AGRP NEURONS. NMDARs, Spines, Source of Excitatory Input and Downstream Effectors
AGRP 神经元。
- 批准号:
8668942 - 财政年份:2012
- 资助金额:
$ 50.56万 - 项目类别:
AgRP neurons: circadian control and interactions with the HPA axis
AgRP 神经元:昼夜节律控制以及与 HPA 轴的相互作用
- 批准号:
10262957 - 财政年份:2012
- 资助金额:
$ 50.56万 - 项目类别:
AgRP neurons: circadian control and interactions with the HPA axis
AgRP 神经元:昼夜节律控制以及与 HPA 轴的相互作用
- 批准号:
10116601 - 财政年份:2012
- 资助金额:
$ 50.56万 - 项目类别:
AgRP Neuron Activity – Plasticity, Gene Expression and Excitatory Afferent Control
AgRP 神经元活性 — 可塑性、基因表达和兴奋性传入控制
- 批准号:
9098186 - 财政年份:2012
- 资助金额:
$ 50.56万 - 项目类别:
AGRP NEURONS. NMDARs, Spines, Source of Excitatory Input and Downstream Effectors
AGRP 神经元。
- 批准号:
8848372 - 财政年份:2012
- 资助金额:
$ 50.56万 - 项目类别:
AgRP neurons: circadian control and interactions with the HPA axis
AgRP 神经元:昼夜节律控制以及与 HPA 轴的相互作用
- 批准号:
10461101 - 财政年份:2012
- 资助金额:
$ 50.56万 - 项目类别:
AGRP NEURONS. NMDARs, Spines, Source of Excitatory Input and Downstream Effectors
AGRP 神经元。
- 批准号:
8341276 - 财政年份:2012
- 资助金额:
$ 50.56万 - 项目类别:
相似海外基金
Role of hypothalamic MC4R in glucose homeostasis via a novel neuroendocrine circuit involving the kidneys and adrenal glands
下丘脑 MC4R 通过涉及肾脏和肾上腺的新型神经内分泌回路在葡萄糖稳态中的作用
- 批准号:
10454300 - 财政年份:2021
- 资助金额:
$ 50.56万 - 项目类别:
Role of hypothalamic MC4R in glucose homeostasis via a novel neuroendocrine circuit involving the kidneys and adrenal glands
下丘脑 MC4R 通过涉及肾脏和肾上腺的新型神经内分泌回路在葡萄糖稳态中的作用
- 批准号:
10666539 - 财政年份:2021
- 资助金额:
$ 50.56万 - 项目类别:
Role of hypothalamic MC4R in glucose homeostasis via a novel neuroendocrine circuit involving the kidneys and adrenal glands
下丘脑 MC4R 通过涉及肾脏和肾上腺的新型神经内分泌回路在葡萄糖稳态中的作用
- 批准号:
10296199 - 财政年份:2021
- 资助金额:
$ 50.56万 - 项目类别:
Role of hypothalamic MC4R in glucose homeostasis via a novel neuroendocrine circuit involving the kidneys and adrenal glands
下丘脑 MC4R 通过涉及肾脏和肾上腺的新型神经内分泌回路在葡萄糖稳态中的作用
- 批准号:
10854123 - 财政年份:2021
- 资助金额:
$ 50.56万 - 项目类别:
Interaction of adrenal glands and liver in canine hepatocellular carcinoma
犬肝细胞癌中肾上腺和肝脏的相互作用
- 批准号:
20H03139 - 财政年份:2020
- 资助金额:
$ 50.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Role of dendritic cells in adrenal glands of healthy and arthritic rats
树突状细胞在健康和关节炎大鼠肾上腺中的作用
- 批准号:
235438724 - 财政年份:2013
- 资助金额:
$ 50.56万 - 项目类别:
Research Grants
Role of neural cell adhesion molecules in structural and functional remodeling of fetal adrenal glands
神经细胞粘附分子在胎儿肾上腺结构和功能重塑中的作用
- 批准号:
20591305 - 财政年份:2008
- 资助金额:
$ 50.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Search for the novel etiology in disorders of sex development (DSD) caused by abnormalities of adrenal glands and gonads.
寻找由肾上腺和性腺异常引起的性发育障碍 (DSD) 的新病因。
- 批准号:
16086202 - 财政年份:2004
- 资助金额:
$ 50.56万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Effects of endocrine disrupters on function of thyroid gland, adrenal glands and gonads
内分泌干扰物对甲状腺、肾上腺和性腺功能的影响
- 批准号:
11839003 - 财政年份:1999
- 资助金额:
$ 50.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Roles of Thyroid and Adrenal glands in the regulation of hypothalamo-hypophysial-ovarian axis in the rat.
甲状腺和肾上腺在大鼠下丘脑-垂体-卵巢轴调节中的作用。
- 批准号:
06660375 - 财政年份:1994
- 资助金额:
$ 50.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




