CRCNS: Circuit mechanisms of priors and learning during decision making
CRCNS:决策过程中先验和学习的循环机制
基本信息
- 批准号:10697351
- 负责人:
- 金额:$ 37.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-05 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAnimal BehaviorAnimalsAreaBehaviorBehavioralBrainCognitionCognitiveCorpus striatum structureDecision MakingDevelopmentEndowmentEnvironmentEventEvolutionExhibitsGoalsHumanLaboratoriesLearningModelingNatureNeural Network SimulationNeuronal PlasticityOutcomePerformancePopulationProcessRattusRewardsRoleShapesSiteSourceSpainSynaptic plasticitySystemTestingTicksTrainingWorkcognitive taskexperimental studyfitnesslearning networkneuralneural circuitneuromechanismnext generationoptogeneticspreventprogramsrecurrent neural networkscaffoldstatisticstool
项目摘要
When learning a new task, both rats and humans exhibit suboptimal behaviors plagued with superstitious
ticks and idiosyncratic biases. One prominent example of such suboptimality are sequential effects:
animals tend to bias their choices based on previous decisions and outcomes, hindering performance in
common laboratory tasks using independent trials.
Recurrent neural networks (RNN) have become a common tool to study potential neural mechanisms of
cognition. Yet, RNNs typically behave much closer to optimality in laboratory tasks than real subjects. We
suggest this behavioral difference is rooted in the fundamental discrepancy between how animals and
current RNNs learn: unlike animals before learning, RNNs before training are tabula rasa and their
connectivity is adjusted exclusively to the local contingencies of the task.
We hypothesize that animals’ learning of simple laboratory tasks builds mostly on pre-existing programs,
namely structural prior, that have been shaped by evolution for the species’ fitness in a given ecological
niche. Sequential effects are a manifestation of such pre-wired strategies, which may ultimately support
learning. To test this, we will characterize sequential effects during learning of a set of perceptual tasks
and identify their underlying neural circuitry. We will compare animals’ behavior with RNNs which, after
being equipped with structural priors, can mimic the animal’s ability to learn new tasks.
Objectives
Objective 1. Compare sequential effects in humans and rats with those developed by RNNs.
Objective 2. Characterize the role of the corticostriatal circuit mPFC --> DMS in the tasks and the site of
plasticity necessary for task learning.
Objective 3. Characterize the neural mechanisms underlying the representation of relevant variables in
the brain of the rat and in RNNs.
当学习一项新任务时,老鼠和人类都表现出受迷信困扰的次优行为
扁虱和特殊的偏见。这种次优的一个突出例子是序贯效应:
动物倾向于根据之前的决定和结果来偏见它们的选择,从而阻碍它们在
使用独立试验的常见实验室任务。
递归神经网络(RNN)已成为一种常用的研究潜在神经机制的工具
认知力。然而,RNN在实验室任务中的表现通常比真正的受试者更接近最佳状态。我们
认为这种行为差异根源于动物和动物之间的根本差异
目前的RNN学习:与学习之前的动物不同,RNN在训练前是Tabula rasa和它们的
连接性仅根据任务的本地意外情况进行调整。
我们假设,动物对简单实验室任务的学习主要建立在预先存在的程序上,
即结构先验,它是通过进化形成的,以适应给定生态环境中的物种
利基市场。顺序效应是这种预先连接的策略的一种表现,这最终可能支持
学习。为了测试这一点,我们将表征一组知觉任务学习过程中的顺序效应
并确定它们潜在的神经回路。我们将把动物的行为与RNN进行比较,之后
拥有先天结构的动物,可以模仿动物学习新任务的能力。
目标
目的1.比较在人和大鼠中的序贯效应与RNN发展的序贯效应。
目标2.描述皮质纹状体回路mPFC--&dms在任务和位置中的作用。
任务学习所必需的可塑性。
目标3.描述相关变量表示的神经机制
大鼠的大脑和RNN中。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid, systematic updating of movement by accumulated decision evidence.
通过积累的决策证据快速、系统地更新运动。
- DOI:10.1101/2023.11.09.566389
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Molano-Mazón,Manuel;Garcia-Duran,Alexandre;Pastor-Ciurana,Jordi;Hernández-Navarro,Lluís;Bektic,Lejla;Lombardo,Debora;delaRocha,Jaime;Hyafil,Alexandre
- 通讯作者:Hyafil,Alexandre
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guangyu Yang其他文献
Guangyu Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guangyu Yang', 18)}}的其他基金
CRCNS: Circuit mechanisms of priors and learning during decision making
CRCNS:决策过程中先验和学习的循环机制
- 批准号:
10610167 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
相似海外基金
Wireless CMOS device for observing real-time brain activity and animal behavior
用于观察实时大脑活动和动物行为的无线 CMOS 设备
- 批准号:
23K06786 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
- 批准号:
RGPIN-2022-03096 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
Discovery Grants Program - Individual
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
- 批准号:
RGPIN-2019-06689 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
Discovery Grants Program - Individual
Development of Semi-Supervised Learning Method using Compressed Video for Real-Time Animal Behavior Analysis
使用压缩视频进行实时动物行为分析的半监督学习方法的开发
- 批准号:
22H03637 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
- 批准号:
DGECR-2022-00323 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
Discovery Launch Supplement
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
- 批准号:
10315486 - 财政年份:2021
- 资助金额:
$ 37.99万 - 项目类别:
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
- 批准号:
10412977 - 财政年份:2021
- 资助金额:
$ 37.99万 - 项目类别:
REU Site: Animal Behavior in Context
REU 网站:背景下的动物行为
- 批准号:
2050311 - 财政年份:2021
- 资助金额:
$ 37.99万 - 项目类别:
Standard Grant
Molecular recording to predict cell fate decisions and animal behavior
分子记录预测细胞命运决定和动物行为
- 批准号:
10260139 - 财政年份:2021
- 资助金额:
$ 37.99万 - 项目类别: