Understanding the biological basis for the association between parenchymal texture features and breast cancer risk
了解实质纹理特征与乳腺癌风险之间关联的生物学基础
基本信息
- 批准号:10697306
- 负责人:
- 金额:$ 48.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnxietyAreaAutomobile DrivingBenignBiologicalBiological FactorsBiological MarkersBiological ProcessBiologyBiopsyBiopsy SpecimenBiosensorBreastBreast Cancer DetectionBreast Cancer PatientBreast Cancer PreventionBreast Cancer Risk FactorBreast CarcinogenesisBreast DiseasesBreast biopsyCancer BurdenCancer PrognosisCharacteristicsClassificationCommunitiesComplementComplexCross-Sectional StudiesDataDevelopmentDimensionsElectronic Health RecordEstradiolEstrogen AntagonistsEstrogen TherapyEstrogensEstroneFoundationsFractalsGoalsHealthHealthcare SystemsHeterogeneityHistologicHistologyHormonalIndividualKnowledgeLengthLobularMalignant NeoplasmsMammographic DensityMammographyMeasurementMeasuresMedical Care CostsMenopausal StatusMethodsMissionMonitorMorphologyNational Cancer InstituteNewly DiagnosedNon-MalignantNorth CarolinaOutcomePathway interactionsPatientsPatternPopulationPreventionPropertyPublic HealthRadiology SpecialtyRecording of previous eventsReportingReproducibilityResearchRiskRoleRunningStructureTestingTextureTimeTissuesUniversitiesUnnecessary ProceduresUrineVariantVisualWomanWomen&aposs Groupbreast cancer diagnosisbreast densitybreast imagingbreast lesioncase controlclinical trial participantdensityevidence baseimprovedinsightlobular breast carcinoma in situlongitudinal analysismalignant breast neoplasmmammography registrymembermultidisciplinarynovelprecision medicineprospectiveradiomicsresponsescreeningspatial relationshipstandard carestatisticstooltreatment responseunnecessary treatmenturinary
项目摘要
Breast composition is a potential breast biomarker, but its utility has been limited by measurement methods.
Visually-assessed qualitative scales capture within-breast heterogeneity but are subjective and lack
reproducibility. In contrast, quantitative automated assessments of global breast density are reproducible, but
contain no information about within-breast variation. Limitations of both of these approaches can be overcome
with the measurement of parenchymal texture features. Texture features are quantitative measures that estimate
complex characteristics of pixel density in the breast image, ranging from descriptive statistics to higher order
statistics that describe spatial relationships and structural patterns. Prior studies have shown that texture features
independently predict breast cancer risk. However, little is known about the biological mechanisms driving that
risk relationship. The objective of this study is to identify the biological processes associated with parenchymal
texture features. The rationale is that direct evidence that texture features reflect specific biological
properties will provide the basis for development of texture features as a dynamic marker of breast cancer
risk and prognosis. This study will pursue three aims. Using a case-control analysis, Aim 1 will identify the
texture features that are independently associated with newly-diagnosed breast cancer among women
attending breast cancer screening. Aim 2 will evaluate how the texture features that were associated with
breast cancer in this population vary with estrogen levels, through (i) cross-sectional analysis of texture features
and 15 urinary estrogens and estrogen metabolites, and (ii) analyses of longitudinal change in texture
features among breast cancer patients treated with anti-estrogenic therapy. Aim 3 will evaluate
associations between texture features and breast histologic characteristics (tissue composition, benign
breast disease/LCIS, measures of lobular involution) among women with a benign biopsy. Analyses will
draw on existing mammograms, biopsy specimens, and electronic health records from women participating
in mammography at the University of North Carolina; urine will be collected prospectively. Texture features
will be measured using a novel lattice-based grid method developed and validated by members of the study
team that allows information from the whole breast to inform the texture measurements. These analyses
will establish: the magnitude of the relationship between lattice-based texture features and breast cancer
in a general screening population (Aim 1); the extent to which texture features may act as biosensors of
breast estrogen/anti-estrogen activity (Aim 2); and whether texture features can serve as a radiologic
surrogate of histologic characteristics that have known associations with breast cancer risk (Aim 3). These
results will clarify the potential role of parenchymal texture features as predictors of breast cancer risk and
therapeutic response; such new uses have the potential to identify new prevention targets and reduce
unnecessary procedures and treatments for women at risk for and being treated for breast cancer.
乳腺成分是一种潜在的乳腺生物标志物,但其实用性受到测量方法的限制。
视觉评估的定性尺度捕捉乳房内异质性,但主观和缺乏
再现性相比之下,全球乳腺密度的定量自动评估是可重复的,但
不包含关于乳房内变化的信息。这两种方法的局限性都可以克服
与实质纹理特征的测量。纹理特征是一种定量的度量,
乳房图像中像素密度的复杂特征,范围从描述性统计到高阶
描述空间关系和结构模式的统计数据。先前的研究表明,纹理特征
独立预测乳腺癌风险。然而,人们对驱动这一过程的生物学机制知之甚少。
风险关系。本研究的目的是确定与脑实质相关的生物学过程,
纹理特征基本原理是,纹理特征反映特定生物学特征的直接证据
这些特性将为纹理特征作为乳腺癌的动态标记物的发展提供基础
风险和预后。这项研究将追求三个目标。使用病例对照分析,目标1将确定
与新诊断的女性乳腺癌独立相关的纹理特征
参加乳腺癌筛查目标2将评估如何纹理特征,与
通过(i)纹理特征的横截面分析,
和15个尿雌激素和雌激素代谢产物,和(ii)纵向纹理变化的分析
抗雌激素治疗的乳腺癌患者的特征。目标3将评估
纹理特征与乳腺组织学特征(组织成分,良性)之间的相关性
乳腺疾病/LCIS,小叶复旧的措施)的妇女与良性活检。分析将
利用现有的乳房X线照片、活检标本和参与妇女的电子健康记录,
在北卡罗来纳州大学进行乳房X线摄影;将前瞻性收集尿液。纹理特征
将使用一种新的基于网格的网格方法进行测量,该方法由该研究的成员开发和验证
该团队允许来自整个乳房的信息为纹理测量提供信息。这些分析
将建立:基于网格的纹理特征和乳腺癌之间的关系的大小
在一般筛选人群(目标1);纹理特征可以作为生物传感器的程度
乳腺雌激素/抗雌激素活性(目标2);以及纹理特征是否可以作为放射学检查的指标。
已知与乳腺癌风险相关的组织学特征的替代物(目标3)。这些
结果将阐明实质纹理特征作为乳腺癌风险预测因子的潜在作用,
这些新用途有可能确定新的预防目标,
对有乳腺癌风险和正在接受乳腺癌治疗的妇女进行不必要的程序和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Jane Nyante其他文献
Sarah Jane Nyante的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Jane Nyante', 18)}}的其他基金
Impact of the COVID-19 pandemic on newly-diagnosed breast cancer
COVID-19 大流行对新诊断乳腺癌的影响
- 批准号:
10359555 - 财政年份:2022
- 资助金额:
$ 48.55万 - 项目类别:
Breast cancer neoadjuvant endocrine therapy during the Covid-19 pandemic: Opportunity for a new treatment paradigm?
Covid-19大流行期间的乳腺癌新辅助内分泌治疗:新治疗模式的机会?
- 批准号:
10425018 - 财政年份:2022
- 资助金额:
$ 48.55万 - 项目类别:
Impact of the COVID-19 pandemic on newly-diagnosed breast cancer
COVID-19 大流行对新诊断乳腺癌的影响
- 批准号:
10544316 - 财政年份:2022
- 资助金额:
$ 48.55万 - 项目类别:
Breast cancer neoadjuvant endocrine therapy during the Covid-19 pandemic: Opportunity for a new treatment paradigm?
Covid-19大流行期间的乳腺癌新辅助内分泌治疗:新治疗模式的机会?
- 批准号:
10589922 - 财政年份:2022
- 资助金额:
$ 48.55万 - 项目类别:
Understanding the biological basis for the association between parenchymal texture features and breast cancer risk
了解实质纹理特征与乳腺癌风险之间关联的生物学基础
- 批准号:
10241446 - 财政年份:2019
- 资助金额:
$ 48.55万 - 项目类别:
Understanding the biological basis for the association between parenchymal texture features and breast cancer risk
了解实质纹理特征与乳腺癌风险之间关联的生物学基础
- 批准号:
10472712 - 财政年份:2019
- 资助金额:
$ 48.55万 - 项目类别:
Understanding the biological basis for the association between parenchymal texture features and breast cancer risk
了解实质纹理特征与乳腺癌风险之间关联的生物学基础
- 批准号:
9975109 - 财政年份:2019
- 资助金额:
$ 48.55万 - 项目类别:
相似海外基金
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 48.55万 - 项目类别:
Fellowship
Clinitouch-360: A digital health platform enabling robust end-to-end care of patients in Primary Care with depression and anxiety
Clinitouch-360:数字健康平台,可为初级保健中的抑郁和焦虑患者提供强大的端到端护理
- 批准号:
10098274 - 财政年份:2024
- 资助金额:
$ 48.55万 - 项目类别:
Collaborative R&D
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 48.55万 - 项目类别:
Visual analysis system to detect and predict the signs of anxiety in healthcare
用于检测和预测医疗保健中焦虑迹象的视觉分析系统
- 批准号:
2902083 - 财政年份:2024
- 资助金额:
$ 48.55万 - 项目类别:
Studentship
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
- 批准号:
10109165 - 财政年份:2024
- 资助金额:
$ 48.55万 - 项目类别:
Launchpad
Healthy Young Minds: co-producing a nature-based intervention with rural High School students to promote mental well-being and reduce anxiety
健康的年轻心灵:与农村高中生共同开展基于自然的干预措施,以促进心理健康并减少焦虑
- 批准号:
MR/Z503599/1 - 财政年份:2024
- 资助金额:
$ 48.55万 - 项目类别:
Research Grant
"Flashforward" imagery and anxiety in young adults: Risk mechanisms and intervention development
年轻人的“闪现”意象和焦虑:风险机制和干预措施的发展
- 批准号:
MR/Y009460/1 - 财政年份:2024
- 资助金额:
$ 48.55万 - 项目类别:
Fellowship
How parents manage climate anxiety: coping and hoping for the whole family
父母如何应对气候焦虑:全家人的应对和希望
- 批准号:
DP230101928 - 财政年份:2024
- 资助金额:
$ 48.55万 - 项目类别:
Discovery Projects
An innovative biofeedback enhanced adaptive extended reality (XR) device to reduce perinatal pain and anxiety during and after childbirth
一种创新的生物反馈增强型自适应扩展现实 (XR) 设备,可减少分娩期间和分娩后的围产期疼痛和焦虑
- 批准号:
10097862 - 财政年份:2024
- 资助金额:
$ 48.55万 - 项目类别:
Collaborative R&D
Digital cognitive-behavior therapy for anxiety and depressive disorders: Building an impactful research project from international partnerships and knowledge exchange in primary care
针对焦虑和抑郁症的数字认知行为疗法:通过初级保健领域的国际合作和知识交流建立一个有影响力的研究项目
- 批准号:
480808 - 财政年份:2023
- 资助金额:
$ 48.55万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




