Understanding the biological basis for the association between parenchymal texture features and breast cancer risk
了解实质纹理特征与乳腺癌风险之间关联的生物学基础
基本信息
- 批准号:10472712
- 负责人:
- 金额:$ 50.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnxietyAreaAutomobile DrivingBenignBiologicalBiological FactorsBiological MarkersBiological ProcessBiologyBiopsyBiopsy SpecimenBiosensorBreastBreast Cancer DetectionBreast Cancer PatientBreast Cancer PreventionBreast Cancer Risk FactorBreast CarcinogenesisBreast DiseasesBreast biopsyCancer BurdenCancer PrognosisCharacteristicsCommunitiesComplementComplexCross-Sectional StudiesDataDevelopmentDimensionsElectronic Health RecordEstradiolEstrogen AntagonistsEstrogen TherapyEstrogensEstroneFoundationsFractalsGoalsHealthHealthcare SystemsHeterogeneityHistologicHistologyHormonalIndividualKnowledgeLengthLobularMalignant NeoplasmsMammographic DensityMammographyMeasurementMeasuresMedical Care CostsMenopausal StatusMethodsMissionMonitorMorphologyNational Cancer InstituteNewly DiagnosedNon-MalignantNorth CarolinaOutcomePathway interactionsPatientsPatternPopulationPreventionPropertyPublic HealthRadiology SpecialtyRecording of previous eventsReportingReproducibilityResearchRiskRoleRunningStructureTestingTextureTimeTissuesUniversitiesUnnecessary ProceduresUrineVariantWomanWomen&aposs Groupbasebreast cancer diagnosisbreast densitybreast imagingbreast lesioncase controlclinical trial participantdensityevidence baseimprovedinsightlobular breast carcinoma in situlongitudinal analysismalignant breast neoplasmmammography registrymembermultidisciplinarynovelprecision medicineprospectiveradiomicsresponsescreeningspatial relationshipstandard carestatisticstooltreatment responseunnecessary treatmenturinary
项目摘要
Breast composition is a potential breast biomarker, but its utility has been limited by measurement methods.
Visually-assessed qualitative scales capture within-breast heterogeneity but are subjective and lack
reproducibility. In contrast, quantitative automated assessments of global breast density are reproducible, but
contain no information about within-breast variation. Limitations of both of these approaches can be overcome
with the measurement of parenchymal texture features. Texture features are quantitative measures that estimate
complex characteristics of pixel density in the breast image, ranging from descriptive statistics to higher order
statistics that describe spatial relationships and structural patterns. Prior studies have shown that texture features
independently predict breast cancer risk. However, little is known about the biological mechanisms driving that
risk relationship. The objective of this study is to identify the biological processes associated with parenchymal
texture features. The rationale is that direct evidence that texture features reflect specific biological
properties will provide the basis for development of texture features as a dynamic marker of breast cancer
risk and prognosis. This study will pursue three aims. Using a case-control analysis, Aim 1 will identify the
texture features that are independently associated with newly-diagnosed breast cancer among women
attending breast cancer screening. Aim 2 will evaluate how the texture features that were associated with
breast cancer in this population vary with estrogen levels, through (i) cross-sectional analysis of texture features
and 15 urinary estrogens and estrogen metabolites, and (ii) analyses of longitudinal change in texture
features among breast cancer patients treated with anti-estrogenic therapy. Aim 3 will evaluate
associations between texture features and breast histologic characteristics (tissue composition, benign
breast disease/LCIS, measures of lobular involution) among women with a benign biopsy. Analyses will
draw on existing mammograms, biopsy specimens, and electronic health records from women participating
in mammography at the University of North Carolina; urine will be collected prospectively. Texture features
will be measured using a novel lattice-based grid method developed and validated by members of the study
team that allows information from the whole breast to inform the texture measurements. These analyses
will establish: the magnitude of the relationship between lattice-based texture features and breast cancer
in a general screening population (Aim 1); the extent to which texture features may act as biosensors of
breast estrogen/anti-estrogen activity (Aim 2); and whether texture features can serve as a radiologic
surrogate of histologic characteristics that have known associations with breast cancer risk (Aim 3). These
results will clarify the potential role of parenchymal texture features as predictors of breast cancer risk and
therapeutic response; such new uses have the potential to identify new prevention targets and reduce
unnecessary procedures and treatments for women at risk for and being treated for breast cancer.
乳腺成分是一种潜在的乳腺生物标志物,但其实用性受到测量方法的限制。
视觉评估的定性尺度捕捉乳房内异质性,但主观和缺乏
再现性相比之下,全球乳腺密度的定量自动评估是可重复的,但
不包含关于乳房内变化的信息。这两种方法的局限性都可以克服
与实质纹理特征的测量。纹理特征是一种定量的度量,
乳房图像中像素密度的复杂特征,范围从描述性统计到高阶
描述空间关系和结构模式的统计数据。先前的研究表明,纹理特征
独立预测乳腺癌风险。然而,人们对驱动这一过程的生物学机制知之甚少。
风险关系。本研究的目的是确定与脑实质相关的生物学过程
纹理特征基本原理是,纹理特征反映特定生物学特征的直接证据
这些特性将为纹理特征作为乳腺癌的动态标记物的发展提供基础
风险和预后。这项研究将追求三个目标。使用病例对照分析,目标1将确定
与新诊断的女性乳腺癌独立相关的纹理特征
参加乳腺癌筛查目标2将评估如何纹理特征,与
通过(i)纹理特征的横截面分析,
和15个尿雌激素和雌激素代谢产物,和(ii)纵向纹理变化的分析
抗雌激素治疗的乳腺癌患者的特征。目标3将评估
纹理特征与乳腺组织学特征(组织成分,良性)之间的相关性
乳腺疾病/LCIS,小叶复旧的措施)的妇女与良性活检。分析将
利用现有的乳房X线照片、活检标本和参与妇女的电子健康记录,
在北卡罗来纳州大学进行乳房X线摄影;将前瞻性收集尿液。纹理特征
将使用一种新的基于网格的网格方法进行测量,该方法由该研究的成员开发和验证
该团队允许来自整个乳房的信息为纹理测量提供信息。这些分析
将建立:基于网格的纹理特征和乳腺癌之间的关系的大小
在一般筛选人群(目标1);纹理特征可以作为生物传感器的程度
乳腺雌激素/抗雌激素活性(目标2);以及纹理特征是否可以作为放射学检查的指标。
已知与乳腺癌风险相关的组织学特征的替代物(目标3)。这些
结果将阐明实质纹理特征作为乳腺癌风险预测因子的潜在作用,
这些新用途有可能确定新的预防目标,
对有乳腺癌风险和正在接受乳腺癌治疗的妇女进行不必要的程序和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Jane Nyante其他文献
Sarah Jane Nyante的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Jane Nyante', 18)}}的其他基金
Impact of the COVID-19 pandemic on newly-diagnosed breast cancer
COVID-19 大流行对新诊断乳腺癌的影响
- 批准号:
10359555 - 财政年份:2022
- 资助金额:
$ 50.31万 - 项目类别:
Breast cancer neoadjuvant endocrine therapy during the Covid-19 pandemic: Opportunity for a new treatment paradigm?
Covid-19大流行期间的乳腺癌新辅助内分泌治疗:新治疗模式的机会?
- 批准号:
10425018 - 财政年份:2022
- 资助金额:
$ 50.31万 - 项目类别:
Impact of the COVID-19 pandemic on newly-diagnosed breast cancer
COVID-19 大流行对新诊断乳腺癌的影响
- 批准号:
10544316 - 财政年份:2022
- 资助金额:
$ 50.31万 - 项目类别:
Breast cancer neoadjuvant endocrine therapy during the Covid-19 pandemic: Opportunity for a new treatment paradigm?
Covid-19大流行期间的乳腺癌新辅助内分泌治疗:新治疗模式的机会?
- 批准号:
10589922 - 财政年份:2022
- 资助金额:
$ 50.31万 - 项目类别:
Understanding the biological basis for the association between parenchymal texture features and breast cancer risk
了解实质纹理特征与乳腺癌风险之间关联的生物学基础
- 批准号:
10697306 - 财政年份:2019
- 资助金额:
$ 50.31万 - 项目类别:
Understanding the biological basis for the association between parenchymal texture features and breast cancer risk
了解实质纹理特征与乳腺癌风险之间关联的生物学基础
- 批准号:
10241446 - 财政年份:2019
- 资助金额:
$ 50.31万 - 项目类别:
Understanding the biological basis for the association between parenchymal texture features and breast cancer risk
了解实质纹理特征与乳腺癌风险之间关联的生物学基础
- 批准号:
9975109 - 财政年份:2019
- 资助金额:
$ 50.31万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Research Grant