Molecular Identity and Physiological Function of Novel Chloride Channels
新型氯离子通道的分子特性和生理功能
基本信息
- 批准号:10672411
- 负责人:
- 金额:$ 49.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcidosisAcidsAnimalsAnionsAreaBiologyCalcium ChannelCell Death InductionCell VolumesCellsCerebral IschemiaChloride ChannelsChloridesCryoelectron MicroscopyCystic FibrosisDiseaseDrug TargetingElectrophysiology (science)EnvironmentEpilepsyFamilyFluids and SecretionsFunctional disorderFundingGenetic DiseasesGoalsIn VitroInfectionInflammationIon ChannelIonsIschemic Brain InjuryKnockout MiceMalignant NeoplasmsMediatingMembrane ProteinsMolecularMolecular ConformationMutagenesisMyocardial IschemiaMyotoniaOrganellesPathologicPathway interactionsPhysiologicalPhysiologyPlayPotassium ChannelProtonsRNA interference screenRegulationResearchRoleSodium ChannelStrokeSwellingTimecell injuryfunctional genomicsimaging geneticsin vivointerdisciplinary approachmouse geneticsnovelpatch clampprogramsreceptorstructural biology
项目摘要
PROJECT SUMMARY/ABSTRACT
Chloride is the most abundant free anion in animal cells. Chloride channels play a wide range of functions
including cell volume regulation, fluid secretion, regulation of excitability, and acidification of intracellular
organelles. Their physiological role is impressively illustrated by many genetic diseases involving chloride
dysregulation, such as cystic fibrosis, myotonia, and epilepsy. However, despite recent progress, chloride
channels have long suffered as poor cousins in the aristocratic family of ion channels. For decades, the field has
been dominated by sodium, potassium and calcium channels. Indeed, there are still many electrophysiologically
well-characterized chloride channels without molecular identity. This gap makes it impossible to elucidate their
precise function and how their dysfunction leads to disease. In the previous R35 MIRA ESI funding period, we
performed an unbiased RNAi screen and identified PAC, a novel membrane protein with no sequence similarity
to other ion channels, as the long sought-after acid or proton-activated chloride (PAC) channel. By mediating
chloride influx and subsequent cell swelling, PAC currents have been implicated in acid-induced cell injury. We
generated PAC knockout mice and demonstrated that PAC plays a key role in acid-induced cell death in vitro
and ischemic brain injury in vivo. Thus, PAC is a potential drug target for stroke and other acidosis-associated
diseases. By combining mutagenesis, patch-clamp recording, and cryo-EM, we revealed for the first time the
trimeric assembly, ion conducting pathway, the basis of anion selectivity, pH-dependent conformational change,
and pH-sensing mechanism of this new channel. Discovery of a novel channel represents a breakthrough that
opens up a new field. In the next 5 years, we will focus on the diverse regulatory mechanisms of the PAC channel
and its surprising physiological function in vesicular acidification that we have recently discovered. The long-term
goal of this MIRA program is to apply a multi-disciplinary approach including high-throughput functional
genomics, patch-clamp electrophysiology, structural biology, imaging, and mouse genetics to the underexplored
area of chloride channel biology.
项目总结/摘要
氯离子是动物细胞中最丰富的游离阴离子。氯离子通道发挥着广泛的功能
包括细胞体积调节、液体分泌、兴奋性调节和细胞内
细胞器他们的生理作用是令人印象深刻的说明了许多遗传疾病涉及氯
调节异常,如囊性纤维化、肌强直和癫痫。然而,尽管最近取得了进展,
在离子通道的贵族家庭中,离子通道长期以来一直是贫穷的表亲。几十年来,该领域
主要由钠钾钙通道控制事实上,仍然有许多电生理学
没有分子身份的良好表征的氯离子通道。这一差距使得无法阐明他们的
以及它们的功能障碍如何导致疾病。在上一个R35 MIRA ESI资助期间,我们
进行了无偏的RNAi筛选,并鉴定了PAC,一种没有序列相似性的新型膜蛋白
其他离子通道,如长期寻求酸或质子激活氯(PAC)通道。通过介导
由于氯离子流入和随后的细胞肿胀,PAC电流与酸诱导的细胞损伤有关。我们
产生PAC敲除小鼠,并证明PAC在体外酸诱导的细胞死亡中起关键作用
和体内缺血性脑损伤。因此,PAC是治疗中风和其他酸中毒相关疾病的潜在药物靶点。
疾病通过结合诱变,膜片钳记录和冷冻电镜,我们首次揭示了
三聚体组装,离子传导途径,阴离子选择性的基础,pH依赖性构象变化,
以及该通道的pH敏感机制。新通道的发现是一个突破,
开辟了一个新的领域。未来5年,我们将重点关注PAC渠道的多样化监管机制
以及我们最近发现的它在囊泡酸化中令人惊讶的生理功能。长期
这个MIRA计划的目标是应用多学科的方法,包括高通量功能
基因组学、膜片钳电生理学、结构生物学、成像和小鼠遗传学,
氯离子通道生物学领域。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular Biology and Physiology of Volume-Regulated Anion Channel (VRAC).
- DOI:10.1016/bs.ctm.2018.07.005
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Osei-Owusu J;Yang J;Vitery MDC;Qiu Z
- 通讯作者:Qiu Z
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhaozhu Qiu其他文献
Zhaozhu Qiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhaozhu Qiu', 18)}}的其他基金
Cell Swelling-Activated Chloride Channel in Ischemic Stroke
缺血性中风中细胞肿胀激活的氯离子通道
- 批准号:
10034096 - 财政年份:2020
- 资助金额:
$ 49.13万 - 项目类别:
Cell Swelling-Activated Chloride Channel in Ischemic Stroke
缺血性中风中细胞肿胀激活的氯离子通道
- 批准号:
10388400 - 财政年份:2020
- 资助金额:
$ 49.13万 - 项目类别:
Cell Swelling-Activated Chloride Channel in Ischemic Stroke
缺血性中风中细胞肿胀激活的氯离子通道
- 批准号:
10609492 - 财政年份:2020
- 资助金额:
$ 49.13万 - 项目类别:
Cell Swelling-Activated Chloride Channel in Ischemic Stroke
缺血性中风中细胞肿胀激活的氯离子通道
- 批准号:
10208988 - 财政年份:2020
- 资助金额:
$ 49.13万 - 项目类别:
Cell Swelling-Activated Chloride Channel in Ischemic Stroke
缺血性中风中细胞肿胀激活的氯离子通道
- 批准号:
10579414 - 财政年份:2020
- 资助金额:
$ 49.13万 - 项目类别:
Molecular Identity and Physiological Function of Novel Chloride Channels
新型氯离子通道的分子特性和生理功能
- 批准号:
10219298 - 财政年份:2017
- 资助金额:
$ 49.13万 - 项目类别:
Molecular Identity and Physiological Function of Novel Chloride Channels
新型氯离子通道的分子特性和生理功能
- 批准号:
10406650 - 财政年份:2017
- 资助金额:
$ 49.13万 - 项目类别:
Molecular Identity and Physiological Function of Novel Chloride Channels
新型氯离子通道的分子特性和生理功能
- 批准号:
9381838 - 财政年份:2017
- 资助金额:
$ 49.13万 - 项目类别:
相似国自然基金
具有抗癌活性的天然产物金霉酸(Aureolic acids)全合成与选择性构建2-脱氧糖苷键
- 批准号:22007039
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
海洋放线菌来源聚酮类化合物Pteridic acids生物合成机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
手性Lewis Acids催化的分子内串联1,5-氢迁移/环合反应及其在构建结构多样性手性含氮杂环化合物中的应用
- 批准号:21372217
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
对空气稳定的新型的有机金属Lewis Acids催化剂制备、表征与应用研究
- 批准号:21172061
- 批准年份:2011
- 资助金额:30.0 万元
- 项目类别:面上项目
钛及含钛Lewis acids促臭氧/过氧化氢体系氧化性能的广普性、高效性及其机制
- 批准号:21176225
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Zip Nucleic Acids引物对高度降解和低拷贝DNA检材的STR分型研究
- 批准号:81072511
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
海洋天然产物Makaluvic acids 的全合成及其对南海鱼虱存活的影响
- 批准号:30660215
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
相似海外基金
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
- 批准号:
2338857 - 财政年份:2024
- 资助金额:
$ 49.13万 - 项目类别:
Continuing Grant
Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
- 批准号:
502577 - 财政年份:2024
- 资助金额:
$ 49.13万 - 项目类别:
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 49.13万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 49.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 49.13万 - 项目类别:
Continuing Grant
Integrated understanding and manipulation of hypoxic cellular functions by artificial nucleic acids with hypoxia-accumulating properties
具有缺氧累积特性的人工核酸对缺氧细胞功能的综合理解和操纵
- 批准号:
23H02086 - 财政年份:2023
- 资助金额:
$ 49.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 49.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 49.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 49.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthetic analogues based on metabolites of omega-3 fatty acids protect mitochondria in aging hearts
基于 omega-3 脂肪酸代谢物的合成类似物可保护衰老心脏中的线粒体
- 批准号:
477891 - 财政年份:2023
- 资助金额:
$ 49.13万 - 项目类别:
Operating Grants