FabI Inhibitors as Potent, Gut Microbiome-Sparing Antibiotics
FabI 抑制剂是有效的、保护肠道微生物群的抗生素
基本信息
- 批准号:10673319
- 负责人:
- 金额:$ 97.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-26 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:Acinetobacter baumanniiAcuteAcyl Carrier ProteinAmino AcidsAnti-Bacterial AgentsAntibioticsBindingBiologicalCanis familiarisCell Culture TechniquesClinicClinicalClinical TrialsCollaborationsCollectionCritical PathwaysDataDevelopmentDockingDoseDrug KineticsDrug resistanceEnzymesEscherichia coliEscherichia coli drug resistanceEvaluationFDA approvedGram-Negative BacteriaGram-Negative Bacterial InfectionsIndustrializationInfectionInvestigational TherapiesKlebsiella pneumoniaeKnowledgeLaboratoriesLeadLigandsMaximum Tolerated DoseModelingMulti-Drug ResistanceMusNatureOutcomeOxidoreductasePatientsPharmaceutical ChemistryPharmaceutical PreparationsPhysiciansPneumoniaPropertyProteinsRattusResistanceRodentRoentgen RaysSafetyScientistSepsisSoft Tissue InfectionsStructureStructure-Activity RelationshipTherapeutic IndexTimeToxic effectToxicologyTranslationsVertebral columnWorkWritingX-Ray Crystallographybacterial resistanceclinical candidatecommensal bacteriadesigndrug developmentefficacy studyexperienceexperimental studyfightinggut bacteriagut dysbiosisgut microbiomein vivoinhibitorlead candidatemembermicrobiomemicrobiome researchnovelnovel drug classnovel strategiespathogenpathogenic bacteriapreclinical studyresistance frequencysafety assessmenttooltrait
项目摘要
PROJECT SUMMARY/ABSTRACT
The percent of Gram-negative bacterial infections that are resistant to common antibiotics has increased at an
alarming rate over the last decade, and there is now an acute need for the discovery of novel antibiotics
effective against multidrug-resistant Gram-negative pathogens. We have made progress understanding the
relationship between physicochemical traits and compound accumulation in Gram-negative bacteria, enabling
us to convert several antibiotics with Gram-positive-only activity into versions that possess activity against key
Gram-negative pathogens. Most advanced is our FabI inhibitor fabimycin; FabI inhibition is a novel strategy
with no approved antibiotics that hit this target. The nature of the FabI enzyme is that it is only essential in
certain pathogenic bacteria, chief among them E. coli, K. pneumoniae, and A. baumannii; thus while fabimycin
is effective against large clinical isolate panels of these pathogens, it has no activity against beneficial
commensal bacteria that reside in the gut. A Gram-negative active antibiotic that spared the gut microbiome is
without precedent and would be a very significant development, given the well-documented deleterious effects
of broad-spectrum antibiotics in causing gut dysbiosis. In addition, our X-ray structures of fabimycin bound to
FabI reveal critical interactions between the ligand and the protein backbone, making bacterial resistance much
more challenging to arise than if interactions were solely with amino acid sidechains. Indeed, fabimycin has a
low frequency of resistance, and resistance in cell culture only evolves over a long period of time. Excitingly,
fabimycin is also active in multiple mouse and rat infection models, including those of soft tissue infection,
pneumonia, sepsis, and UTI. To become a true clinical candidate the Therapeutic Index (TI) of fabimycin needs
to be widened. Herein we propose development of more potent versions of fabimycin through application of a
recent understanding of the relationship between compound efflux and structure that has emerged from our
laboratories. Applying these lessons to fabimycin will enable us to systematically reduce its efflux liability,
leading to MIC values for optimized derivatives that are 5-fold more potent than fabimycin and will thus have
the appropriate TI for advancement. We have assembled a team of experts with the full suite of tools needed
for this work: medicinal chemistry, understanding of efflux, access to large panels of clinical isolates,
sophisticated models of antibacterial efficacy in mice and rats, and detailed pharmacokinetics and toxicology
in mice, rats, and dogs, and microbiome studies in mice and dogs. Our Critical Path provides specific criteria
for compound advancement and we are guided by best practices for antibiotic drug development as deliniated
by the FDA. Our plan is to select the lead candidate by the end of Year 2, and then spend the remaining three
years building a sophisticated data package that will facilitate rapid translation of this antibiotic to the clinic.
项目总结/摘要
革兰氏阴性菌感染对常用抗生素耐药的百分比以1.5%的速度增加。
在过去的十年里,抗生素的发展速度令人震惊,现在迫切需要发现新的抗生素
有效对抗多重耐药革兰氏阴性病原体。我们在理解
革兰氏阴性菌中理化性状与化合物积累之间的关系,
我们将几种仅具有革兰氏阳性活性的抗生素转化为具有抗关键活性的抗生素,
革兰氏阴性病原体。最先进的是我们的FabI抑制剂Fabimycin; FabI抑制是一种新的策略
没有经过批准的抗生素可以达到这个目标。FabI酶的性质是,它仅在
某些致病菌,其中主要是E. coli,K. pneumoniae和A.鲍曼不动杆菌;法比霉素
对这些病原体的大量临床分离株有效,但对有益的病原体没有活性
肠道内的细菌。一种革兰氏阴性的活性抗生素,
没有先例,这将是一个非常重要的发展,因为有充分的证据表明,
广谱抗生素导致肠道生态失调。此外,我们的法比霉素的X射线结构结合到
FabI揭示了配体和蛋白质骨架之间的关键相互作用,使细菌的耐药性大大增强。
比单独与氨基酸侧链相互作用更具挑战性。事实上,法比霉素具有
抗性频率低,并且细胞培养中的抗性仅在很长一段时间内演变。令人兴奋的是,
法比霉素在多种小鼠和大鼠感染模型,包括软组织感染模型,
肺炎败血症和尿路感染要成为真正的临床候选药物,法比霉素的治疗指数(TI)需要
要扩大。在此,我们建议通过应用一种新的抗生素来开发更有效的法比霉素。
最近的理解之间的关系,化合物流出和结构,已经出现了从我们的
laboratories.将这些经验应用于法比霉素将使我们能够系统地减少其外排倾向,
导致优化的衍生物的MIC值比法比霉素强5倍,
适当的TI以促进发展。我们已经组建了一个专家团队,拥有所需的全套工具
这项工作:药物化学,了解外排,获得大量的临床分离株,
在小鼠和大鼠中的抗菌功效的复杂模型,以及详细的药代动力学和毒理学
在小鼠、大鼠和狗中进行的研究,以及在小鼠和狗中进行的微生物组研究。我们的关键路径提供了具体的标准
我们遵循抗生素药物开发的最佳实践,
被FDA。我们的计划是在第二年年底前选出主要候选人,然后在剩下的三年里
多年来建立了一个复杂的数据包,将有助于这种抗生素快速转化为临床。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Hergenrother其他文献
Paul Hergenrother的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Hergenrother', 18)}}的其他基金
Training Program at the Chemistry Biology Interface
化学生物学接口的培训计划
- 批准号:
10202668 - 财政年份:2020
- 资助金额:
$ 97.78万 - 项目类别:
Training Program at the Chemistry Biology Interface
化学生物学接口的培训计划
- 批准号:
10623229 - 财政年份:2020
- 资助金额:
$ 97.78万 - 项目类别:
Training Program at the Chemistry Biology Interface
化学生物学接口的培训计划
- 批准号:
10441373 - 财政年份:2020
- 资助金额:
$ 97.78万 - 项目类别:
Predictive Guidelines for Penetrance and Discovery of Broad-Spectrum Antibiotics
广谱抗生素外显率和发现的预测指南
- 批准号:
10326787 - 财政年份:2018
- 资助金额:
$ 97.78万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 97.78万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 97.78万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 97.78万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 97.78万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 97.78万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 97.78万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 97.78万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 97.78万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 97.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 97.78万 - 项目类别:
Operating Grants