Novel Radiomics for Predicting Response to Immunotherapy for Lung Cancer
预测肺癌免疫治疗反应的新型放射组学
基本信息
- 批准号:10699497
- 负责人:
- 金额:$ 56.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-02 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAftercareAntitumor ResponseBiologicalBiological MarkersBiopsyCancer PatientCharacteristicsClinicalClinical TrialsClinical Trials Cooperative GroupComputer Vision SystemsComputersDevelopmentDiagnosisDisease ProgressionEarly identificationEarly treatmentEastern Cooperative Oncology GroupEnvironmentGoalsImmuneImmune checkpoint inhibitorImmune responseImmune systemImmunotherapeutic agentImmunotherapyInflammatoryInstitutionLettersMalignant NeoplasmsMalignant neoplasm of lungMeasurementMolecularMonitorMorphologyMutationNatureNeoadjuvant TherapyNivolumabNoduleNon-Small-Cell Lung CarcinomaNonmetastaticOutcomePD-1/PD-L1PathologicPathway interactionsPatientsPatternPharmaceutical PreparationsPharmacologic SubstancePhasePhenotypePredictive ValuePublishingRadiology SpecialtyReportingResectedScanningShapesSiteTestingTextureTimeTissuesToxic effectTrainingTreatment outcomeTumor BiologyTumor-Infiltrating LymphocytesValidationX-Ray Computed Tomographyanti-PD-1anti-PD-1/PD-L1anti-PD-L1 therapybasecostimaging biomarkerimmunotherapy clinical trialsimmunotherapy trialsindustry partnerinhibitor therapynon-invasive imagingnovelphase III trialpredicting responsepredictive markerprimary endpointprognosticprognostic of survivalprognostic valueprogrammed cell death ligand 1prospectiveradiological imagingradiomicsresponders and non-respondersresponsesuccesssurvival outcomesurvival predictiontooltreatment responsetumortumor behaviortumor heterogeneity
项目摘要
ABSTRACT: In 2019, an estimated 228,150 patients in the US are expected to be diagnosed with non-small cell
lung cancer (NSCLC). A recent landmark development has been the approval of the immune checkpoint
inhibitors (anti-PD-1 and anti-PD-L1) for the treatment of locally advanced and metastatic NSCLC. These
immunotherapy (IO) drugs have an excellent toxicity profile and have the potential to induce durable clinically
meaningful responses. However, only 1 in 5 NSCLC patients treated with IO will have a favorable response.
Unfortunately, the current tissue based biomarker approach to selecting patients for these treatments is sub-
optimal due to the dynamic nature of the interaction of the immune system with the tumor. Given the prohibitive
costs associated with IO (>$200K/year per patient), there is a critical unmet need for predictive biomarkers to
identify which patients will not benefit from IO. Additionally, the current clinical standard to evaluating tumor
response (i.e. RECIST and irRC which evaluate change in tumor size and nodule disappearance) is sub-optimal
in evaluating early clinical benefit from IO drugs. This is due at least in part to the fact that some patients
undergoing IO present apparent disease progression (pseudo-progression) on post-treatment CT scans.
Unlike the standard canon of radiomics (computer extracted features from radiographic scans) that
assess textural or shape patterns, our group has been developing novel computer vision strategies to capture
patterns of peri-tumoral heterogeneity (outside the tumor) and tumor vasculature from CT scans. In N>300
patients, our group has shown that (1) radiomics of vessel tortuosity on baseline, pre-treatment CT for NSCLC
patients undergoing IO were significantly different between responders (less tortuous) and non-responders
(more tortuous), (2) serial changes in these measurements were better predictors of early response to IO
compared to clinical response criteria such as RECIST and irRC and (3) these radiomic attributes were
associated with PD-L1 expression and degree of tumor infiltrating lymphocytes on baseline biopsies. Critically,
these radiomic features predicted response for NSCLC patients treated with 3 different IO agents from 3 sites.
In this project we will further develop vasculature, peri- and intra-tumoral radiomic features for monitoring
and predicting benefit and early response for NSCLC patients treated with IO. We will uniquely train our radiomics
using a set of N>180 resected NSCLC patients treated with first line IO and for whom we will have major
pathologic response (MPR) as primary endpoint. In addition, we will establish the biological underpinnings of
these predictive radiomic signatures by evaluating their association with the morphology, immune landscape
(from biopsies) and molecular pathways of the tumor. In addition we have access to N>700 NSCLC patients
treated on completed clinical trials via our industry partners (Astrazeneca, Bristol-Myers Squibb) for tool
validation. Finally, we will deploy LunIOTx within the ECOG-5163 (INSIGNA) trial (N>600), the first time that
radiomics will be evaluated within a prospective cooperative group clinical trial for IO.
摘要:2019年,预计美国将有228,150名患者被诊断为非小细胞肺癌。
肺癌(NSCLC)。最近的一个里程碑式的发展是免疫检查点的批准
抑制剂(抗PD-1和抗PD-L1)用于治疗局部晚期和转移性NSCLC。这些
免疫治疗(IO)药物具有优异的毒性特征,并且具有诱导持久的临床免疫应答的潜力。
有意义的回答。然而,只有1/5的接受IO治疗的NSCLC患者会有良好的反应。
不幸的是,目前基于组织的生物标志物的方法来选择患者进行这些治疗是亚,
这是由于免疫系统与肿瘤相互作用的动态性质而最佳的。鉴于禁止
与IO相关的成本(每位患者> 20万美元/年),对预测生物标志物的关键需求尚未得到满足,
确定哪些患者不会从IO中受益。此外,目前评价肿瘤的临床标准
缓解(即评价肿瘤大小变化和结节消失的RECIST和irRC)为次优
评估IO药物的早期临床获益。这至少部分是由于一些患者
接受IO的患者在治疗后CT扫描上表现出明显的疾病进展(假进展)。
不像放射组学的标准规范(计算机从射线照相扫描中提取特征),
评估纹理或形状模式,我们的团队一直在开发新的计算机视觉策略,
肿瘤周围异质性(肿瘤外)和来自CT扫描的肿瘤脉管系统的模式。单位:N>300
患者,我们的研究小组已经表明(1)基线血管迂曲度的放射组学,NSCLC治疗前CT
接受IO的患者在应答者(较少迂曲)和无应答者之间存在显著差异
(more迂曲),(2)这些测量值的连续变化是IO早期反应的更好预测因素
与临床反应标准如RECIST和irRC相比,(3)这些放射组学属性
与基线活检中PD-L1表达和肿瘤浸润淋巴细胞程度相关。重要的是,
这些放射组学特征预测了用来自3个部位的3种不同IO试剂治疗的NSCLC患者的应答。
在这个项目中,我们将进一步发展血管,肿瘤和肿瘤内放射组学特征,用于监测
并预测IO治疗NSCLC患者的获益和早期反应。我们将以独特的方式训练我们的放射组学
使用一组N>180例接受一线IO治疗的切除NSCLC患者,
病理学缓解(MPR)作为主要终点。此外,我们将建立生物学基础,
通过评估这些预测性放射组学特征与形态学、免疫景观
(from活组织检查)和肿瘤的分子途径。此外,我们还接触了N>700名NSCLC患者,
通过我们的行业合作伙伴(阿斯利康,百时美施贵宝)完成的临床试验进行治疗,
验证。最后,我们将在ECOG-5163(INSIGNA)试验中部署LunIOTx(N>600),这是首次
放射组学将在IO的前瞻性合作组临床试验中进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anant Madabhushi其他文献
Anant Madabhushi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anant Madabhushi', 18)}}的其他基金
An AI-enabled Digital Pathology Platform for Multi-Cancer Diagnosis, Prognosis and Prediction of Therapeutic Benefit
基于人工智能的数字病理学平台,用于多种癌症的诊断、预后和治疗效果预测
- 批准号:
10416206 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10589239 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
An AI-enabled Digital Pathology Platform for Multi-Cancer Diagnosis, Prognosis and Prediction of Therapeutic Benefit
基于人工智能的数字病理学平台,用于多种癌症的诊断、预后和治疗效果预测
- 批准号:
10698122 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
Novel Radiomics for Predicting Response to Immunotherapy for Lung Cancer
预测肺癌免疫治疗反应的新型放射组学
- 批准号:
10703255 - 财政年份:2021
- 资助金额:
$ 56.7万 - 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
- 批准号:
10478916 - 财政年份:2020
- 资助金额:
$ 56.7万 - 项目类别:
Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection
心脏同种异体移植排斥反应的计算机辅助组织学评估
- 批准号:
10246527 - 财政年份:2020
- 资助金额:
$ 56.7万 - 项目类别:
Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection
心脏同种异体移植排斥反应的计算机辅助组织学评估
- 批准号:
10687842 - 财政年份:2020
- 资助金额:
$ 56.7万 - 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
- 批准号:
10084629 - 财政年份:2020
- 资助金额:
$ 56.7万 - 项目类别:
Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection
心脏同种异体移植排斥反应的计算机辅助组织学评估
- 批准号:
10471279 - 财政年份:2020
- 资助金额:
$ 56.7万 - 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
- 批准号:
10267200 - 财政年份:2020
- 资助金额:
$ 56.7万 - 项目类别:
相似海外基金
Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
- 批准号:
DP240100640 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
- 批准号:
23K01889 - 财政年份:2023
- 资助金额:
$ 56.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10452217 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10670838 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
- 批准号:
DP200100492 - 财政年份:2020
- 资助金额:
$ 56.7万 - 项目类别:
Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
- 批准号:
407264 - 财政年份:2019
- 资助金额:
$ 56.7万 - 项目类别:
Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
- 批准号:
18K18240 - 财政年份:2018
- 资助金额:
$ 56.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
- 批准号:
17K12379 - 财政年份:2017
- 资助金额:
$ 56.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
- 批准号:
17K13937 - 财政年份:2017
- 资助金额:
$ 56.7万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
- 批准号:
8742767 - 财政年份:2014
- 资助金额:
$ 56.7万 - 项目类别: