An AI-enabled Digital Pathology Platform for Multi-Cancer Diagnosis, Prognosis and Prediction of Therapeutic Benefit
基于人工智能的数字病理学平台,用于多种癌症的诊断、预后和治疗效果预测
基本信息
- 批准号:10698122
- 负责人:
- 金额:$ 55.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-05 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAcuteAdjuvant ChemotherapyAdjuvant RadiotherapyAdjuvant TherapyAffectAsian AmericansBiological AssayBreastBreast Cancer PatientCancer CenterCancer PatientCell NucleusChemotherapy and/or radiationClinicalClinical TrialsCollaborationsComputer Vision SystemsData SetDiagnosisDiagnostic testsEarly identificationEstrogen receptor positiveGene ExpressionGene Expression ProfilingGenomicsHead and Neck CancerHealth Services AccessibilityHematoxylin and Eosin Staining MethodImageImage AnalysisIn complete remissionIndiaIndividualMalignant NeoplasmsMalignant Squamous Cell NeoplasmMalignant neoplasm of lungMalignant neoplasm of prostateMolecularMorphologyNeoadjuvant TherapyNomogramsOral cavityOutcomePathologicPatient-Focused OutcomesPatientsPatternPattern RecognitionPelvisPerformancePhysical shapePopulationPostoperative PeriodPrevalencePricePrognosisProstateRadiationRadiation Therapy Oncology GroupRadiation therapyRecurrenceRecurrent diseaseResourcesRiskRoleShapesSlideSouth AsianSouthwest Oncology GroupStainsTestingTherapeuticTissue StainsTissuesUniversitiesValidationVisualWomanbehavioral outcomecancer diagnosiscaucasian Americancompanion diagnosticscost comparisondigitaldigital imagingdigital pathologyhigh riskhigh risk populationimprovedinnovationlow and middle-income countriesmalignant breast neoplasmmalignant mouth neoplasmmenmouth squamous cell carcinomaoncotypeoutcome predictionovertreatmentprecision medicinepredictive modelingpredictive testpredictive toolsprognosticprognostic assaysprognostic modelprognostic toolprognosticationprospectiveprostate cancer riskresponseside effectsuccesstooltreatment responsetrial comparingtriple-negative invasive breast carcinomatumor behavior
项目摘要
SUMMARY: Recognizing that over-diagnosis of many cancers is leading to over-treatment with adjuvant
chemotherapy or with radiation therapy boost, there is a growing appreciation for the need for prognostic and
predictive assays to identify those cancer patients who can benefit from therapy de-intensification. While multi-gene-expression based tests such as Oncotype DX and Decipher exist for identifying early-stage breast and
prostate cancer patients who could avoid adjuvant therapies and hence mitigate side-effects and complications,
the price of these tests ($3K-4K/patient) puts them beyond the reach of most patients in low- and middle-income
countries (LMICs). Ironically, the need for these prognostic and predictive tests is even more acute in LMICs like
India, where access to treatment resources like radiation and chemotherapy are limited and hence need to be
administered judiciously to those patients who stand to receive the most benefit from them.
Sophisticated digital pathomic analysis with computer vision and pattern recognition tools has been
shown to “unlock” sub-visual attributes about tumor behavior and patient outcomes from hematoxylin & eosin
(H&E)-stained slides alone. The Madabhushi team at Case Western Reserve University (CWRU) has extensively
shown the potential for these approaches for predicting outcome and therapeutic response for breast, head and
neck, lung and prostate cancer. The Madabhushi team working with collaborators Dr. Parmar and Dr. Desai at
the Tata Memorial Center (TMC), the largest cancer center in India, has shown that advanced pathomic analysis
is able to identify unique prognostic morphologic signatures of breast cancer that are different between South
Asian (SA) and Caucasian American (CA) women 1. In addition, the CWRU group has shown that digital pathomic
based image classifiers can significantly improve and even outperform the prognostic and predictive
performance of expensive gene-expression assays for breast (Oncotype Dx) and prostate cancer (Decipher) 2.
Building on the strong extant collaboration between CWRU and TMC 3, and a strong track record in digital
image based prognostic and predictive based assays, we propose to optimize and validate an AI-enabled Digital
Pathology Platform (ADAPT) for Multi-Cancer Diagnosis, Prognosis and Prediction of Therapeutic Benefit.
ADAPT will involve optimizing the previously developed image assays by the CWRU group in the context of SA
cancer patients. Furthermore, by integrating the AI-pathomic tools with PathPresenter, a widely used digital
pathology image analysis platform, ADAPT will have a global footprint for the prognostic and predictive tools.
Specifically, ADAPT will be validated for predicting outcome and benefit of adjuvant chemo- and radiation therapy
in the context of estrogen receptor positive (ER+) breast cancer (BC) and triple negative breast cancer (TNBC),
oral cavity squamous cell carcinoma (OC-SCC) and prostate cancer at TMC via a number of clinical trial datasets
in the US (SWOG S8814, RTOG 0920, 0521) and at TMC (AREST, POP-RT). Successful project completion
will establish ADAPT as an Affordable Precision Medicine (APM) solution for Indian cancer patients.
总结:认识到许多癌症的过度诊断导致了辅助治疗的过度治疗,
随着化疗或放射治疗加强,越来越多的人认识到需要预后和
预测性分析,以识别那些可以从治疗去强化中受益的癌症患者。虽然基于多基因表达的测试如Oncotype DX和Decipher用于识别早期乳腺癌,
前列腺癌患者可以避免辅助治疗,从而减轻副作用和并发症,
这些检查的价格(3000 - 4000美元/患者)使大多数中低收入患者无法负担
中低收入国家。具有讽刺意味的是,对这些预后和预测性测试的需求在LMIC中更为迫切,
印度,在那里获得放射和化疗等治疗资源是有限的,因此需要
明智地给予那些能够从中获得最大利益的患者。
利用计算机视觉和模式识别工具进行的复杂的数字病理组学分析已经被
显示从苏木精和伊红“解锁”关于肿瘤行为和患者结果的亚视觉属性
(H&E)染色的载玻片。凯斯西储大学(CWRU)的Madabhushi团队广泛地
显示了这些方法用于预测乳腺、头部和
颈部肺癌和前列腺癌Madabhushi团队与合作者Parmar博士和Desai博士合作,
印度最大的癌症中心塔塔纪念中心(TMC)已经表明,先进的病理组学分析
是能够识别乳腺癌的独特预后形态学标志,是不同的南方之间,
亚洲(SA)和高加索美国(CA)女性1。此外,CWRU小组已经表明,数字病理学
基于图像分类器可以显着改善,甚至优于预后和预测
用于乳腺癌(Oncotype Dx)和前列腺癌(Decipher)的昂贵基因表达测定的性能2.
基于CWRU和TMC 3之间现有的强大合作,以及在数字化方面的良好记录,
基于图像的预后和基于预测的分析,我们建议优化和验证支持AI的数字
病理学平台(ADAPT)用于多种癌症诊断、预后和治疗获益预测。
ADAPT将涉及在SA背景下优化CWRU组先前开发的图像分析
癌症患者。此外,通过将AI病理学工具与PathPresenter集成,PathPresenter是一个广泛使用的数字
作为病理图像分析平台,ADAPT将在全球范围内拥有预后和预测工具。
具体而言,将验证ADAPT用于预测辅助化疗和放疗的结局和获益
在雌激素受体阳性(ER+)乳腺癌(BC)和三阴性乳腺癌(TNBC)的情况下,
口腔鳞状细胞癌(OC-SCC)和前列腺癌在TMC通过一些临床试验数据集
在美国(SWOG S8814,RTOG 0920,0521)和TMC(AREST,POP-RT)。成功完成项目
ADAPT将成为印度癌症患者负担得起的精准医疗(APM)解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anant Madabhushi其他文献
Anant Madabhushi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anant Madabhushi', 18)}}的其他基金
An AI-enabled Digital Pathology Platform for Multi-Cancer Diagnosis, Prognosis and Prediction of Therapeutic Benefit
基于人工智能的数字病理学平台,用于多种癌症的诊断、预后和治疗效果预测
- 批准号:
10416206 - 财政年份:2022
- 资助金额:
$ 55.35万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10589239 - 财政年份:2022
- 资助金额:
$ 55.35万 - 项目类别:
Novel Radiomics for Predicting Response to Immunotherapy for Lung Cancer
预测肺癌免疫治疗反应的新型放射组学
- 批准号:
10703255 - 财政年份:2021
- 资助金额:
$ 55.35万 - 项目类别:
Novel Radiomics for Predicting Response to Immunotherapy for Lung Cancer
预测肺癌免疫治疗反应的新型放射组学
- 批准号:
10699497 - 财政年份:2021
- 资助金额:
$ 55.35万 - 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
- 批准号:
10478916 - 财政年份:2020
- 资助金额:
$ 55.35万 - 项目类别:
Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection
心脏同种异体移植排斥反应的计算机辅助组织学评估
- 批准号:
10246527 - 财政年份:2020
- 资助金额:
$ 55.35万 - 项目类别:
Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection
心脏同种异体移植排斥反应的计算机辅助组织学评估
- 批准号:
10687842 - 财政年份:2020
- 资助金额:
$ 55.35万 - 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
- 批准号:
10084629 - 财政年份:2020
- 资助金额:
$ 55.35万 - 项目类别:
Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection
心脏同种异体移植排斥反应的计算机辅助组织学评估
- 批准号:
10471279 - 财政年份:2020
- 资助金额:
$ 55.35万 - 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
- 批准号:
10267200 - 财政年份:2020
- 资助金额:
$ 55.35万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 55.35万 - 项目类别:
Operating Grants