Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection

心脏同种异体移植排斥反应的计算机辅助组织学评估

基本信息

  • 批准号:
    10246527
  • 负责人:
  • 金额:
    $ 79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Though cardiac transplantation is a lifesaving intervention, cardiac allograft rejection (CAR) remains a relatively common and serious complication that confers an increased risk of acute graft failure and adverse patient outcomes. For three decades, endomyocardial biopsy (EMB) with histological grading, as recommended by the International Society of Heart and Lung Transplantation (ISHLT) has been the broadly applied standard for CAR diagnosis. However, it is widely appreciated that the ISHLT rejection grading standard lacks diagnostic accuracy and has limited ability to discern the mechanism of rejection. These limitations expose patients to risks of both over-treatment and under-treatment, and highlight the unmet need for more accurate and informative approaches to histopathologic analysis of EMB samples. Our team is a leader in computational pathology image analysis with over 200 papers and >30 issued patents in this area. We have already developed and evaluated a computer assisted histopathology grading evaluation (CACHE) scheme which (1) in N=205 patients, had an area under the receiver operating characteristic curve (AUC)=0.95 compared to two cardiac pathologists (mean AUC=0.74) in distinguishing normal from failing hearts and (2) could distinguish low and high ISHLT rejection grades in N=1109 patients with a performance that exceeds that of trained cardiac pathologists. Recognizing the frequent discordance between ISHLT rejection grade and the clinical trajectory of a rejection event, we will further develop and optimize CACHE to identify new “grade agnostic” morphologic biomarkers of clinically serious CAR. Our scientific premise is that morphologic biomarkers prioritized based on their correlation to patients’ clinical trajectories and underlying immunological disease mechanisms will generate an accurate, consistent and informative classifier for diagnosing allograft rejection. In service of this hypothesis, the proposed research will address three specific aims. In Aim 1, we will utilize computational image analysis to discover the morphologic biomarkers of rejection-related injury which are needed to develop a classifier capable of assessing the clinical trajectory of CAR. In Aim 2, we will provide mechanistic annotation of biomarkers identified in Aim 1 through correlation with in-situ immunologic markers using custom multi-parameter immunofluorescence panels. In Aim 3, we employ a multicenter, prospective cohort to validate the diagnostic and mechanistic accuracy of the new rejection classifier developed in Aims 1 and 2. Ultimately, development of a more accurate and mechanistically informative tool for morphologic diagnosis of CAR will improve patient outcomes by reducing over- and under- treatment and inspire applications in other organ transplants. Interestingly, development of a superior histologic diagnostic tool will empower development of alternative, biopsy-free diagnostic approaches that have been handicapped by the necessity of comparison with the flawed ISHLT rejection grade as a reference standard.
项目摘要 虽然心脏移植是一种挽救生命的干预措施,但心脏移植排斥反应(CAR)仍然是一个相对严重的问题。 一种常见的严重并发症,可增加急性移植物衰竭和患者不良反应的风险 结果。30年来,肌内膜活检(EMB)与组织学分级,如推荐的 国际心肺移植学会(ISHLT)已成为广泛应用的CAR标准 诊断.然而,普遍认识到ISHLT排斥分级标准缺乏诊断准确性 并且辨别排斥机制的能力有限。这些局限性使患者面临两种风险 过度治疗和治疗不足,并强调对更准确和更翔实的 EMB样本的组织病理学分析方法。我们的团队是计算病理学图像的领导者 在该领域拥有超过200篇论文和超过30项已授权专利。我们已经开发并评估了一个 计算机辅助组织病理学分级评价(CACHE)方案,其中(1)在N=205例患者中,有一个区域 与两名心脏病理学家相比,受试者工作特征曲线下面积(AUC)=0.95(平均值 AUC=0.74)区分正常和衰竭心脏,(2)可区分低和高ISHLT排斥反应 在N=1109例患者中进行分级,其性能超过经过培训的心脏病理学家。认识到 ISHLT排斥反应分级和排斥反应事件的临床轨迹之间的频繁不一致,我们将进一步 开发和优化CACHE,以识别临床严重CAR的新的“等级不可知”形态学生物标志物。 我们的科学前提是,形态学生物标志物根据其与患者临床表现的相关性进行优先排序。 轨迹和潜在的免疫疾病机制将产生一个准确的,一致的, 用于诊断同种异体移植排斥的信息分类器。为了满足这一假设,拟议的研究将 提出三个具体目标。在目标1中,我们将利用计算机图像分析来发现 排斥相关损伤的生物标志物,这是开发能够评估临床排斥反应的分类器所需的。 车的轨迹。在目标2中,我们将提供目标1中鉴定的生物标志物的机制注释, 使用定制的多参数免疫荧光面板与原位免疫标记物相关。在Aim中 3,我们采用多中心,前瞻性队列,以验证新的诊断和机制的准确性, 在目标1和2中开发的拒绝分类器。最终,开发一种更准确、更机械的 CAR形态学诊断的信息工具将通过减少过度和不足, 治疗和启发在其他器官移植中的应用。有意思的是,发展出上级组织学 诊断工具将有助于开发替代的、无活检的诊断方法, 由于必须与作为参考标准的有缺陷的ISHLT拒绝等级进行比较而受到阻碍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anant Madabhushi其他文献

Anant Madabhushi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anant Madabhushi', 18)}}的其他基金

An AI-enabled Digital Pathology Platform for Multi-Cancer Diagnosis, Prognosis and Prediction of Therapeutic Benefit
基于人工智能的数字病理学平台,用于多种癌症的诊断、预后和治疗效果预测
  • 批准号:
    10416206
  • 财政年份:
    2022
  • 资助金额:
    $ 79万
  • 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
  • 批准号:
    10589239
  • 财政年份:
    2022
  • 资助金额:
    $ 79万
  • 项目类别:
An AI-enabled Digital Pathology Platform for Multi-Cancer Diagnosis, Prognosis and Prediction of Therapeutic Benefit
基于人工智能的数字病理学平台,用于多种癌症的诊断、预后和治疗效果预测
  • 批准号:
    10698122
  • 财政年份:
    2022
  • 资助金额:
    $ 79万
  • 项目类别:
Novel Radiomics for Predicting Response to Immunotherapy for Lung Cancer
预测肺癌免疫治疗反应的新型放射组学
  • 批准号:
    10703255
  • 财政年份:
    2021
  • 资助金额:
    $ 79万
  • 项目类别:
Novel Radiomics for Predicting Response to Immunotherapy for Lung Cancer
预测肺癌免疫治疗反应的新型放射组学
  • 批准号:
    10699497
  • 财政年份:
    2021
  • 资助金额:
    $ 79万
  • 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
  • 批准号:
    10478916
  • 财政年份:
    2020
  • 资助金额:
    $ 79万
  • 项目类别:
Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection
心脏同种异体移植排斥反应的计算机辅助组织学评估
  • 批准号:
    10687842
  • 财政年份:
    2020
  • 资助金额:
    $ 79万
  • 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
  • 批准号:
    10084629
  • 财政年份:
    2020
  • 资助金额:
    $ 79万
  • 项目类别:
Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection
心脏同种异体移植排斥反应的计算机辅助组织学评估
  • 批准号:
    10471279
  • 财政年份:
    2020
  • 资助金额:
    $ 79万
  • 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
  • 批准号:
    10267200
  • 财政年份:
    2020
  • 资助金额:
    $ 79万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了