MAPPING RETINOTECTAL CIRCUITS FOR VISUAL-EVOKED INNATE BEHAVIORS
绘制视觉诱发先天行为的视网膜环路
基本信息
- 批准号:10676764
- 负责人:
- 金额:$ 75.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AnatomyAnimal BehaviorAreaAxonBehaviorBehavioralBindingBioinformaticsBrainCommunicationComplexDataDevelopmentElectrophysiology (science)EngineeringEnsureFreezingFutureGeneticGlycoproteinsGoalsHistologyImageIndividualInstinctIntegrinsKnowledgeLabelLeadLinkMapsMeasurementMediatingMethodsMidbrain structureMolecularMotionMusNervous System PhysiologyNeuronsOutputPopulationResolutionRetinaRetinal Ganglion CellsRoleSortingSpecificitySynapsesSystemTectum MesencephaliTracerVisualVisual SystemWheat Germ AgglutininsWorkaxon growthdefense responseempowermentexcitatory neuronextracellularganglion cellgenetic analysisgenetic manipulationinhibitory neuroninsightnephronectinneural circuitneuronal circuitryoptogeneticspostsynapticpostsynaptic neuronsretinotectalsequencing platformsingle-cell RNA sequencingsuperior colliculus Corpora quadrigeminatoolvisual processing
项目摘要
PROJECT SUMMARY
The precise assembly of neural circuits ensures accurate neurological function and behavior. For
example, to communicate specific aspects of the visual world to the brain, retinal ganglion cells (RGCs) find and
form synaptic contacts with specific postsynaptic partners out of the heterogeneous neuronal population of
retino-recipient areas in the brain. One such area is the superior colliculus (SC), which receives direct retinal
inputs and sends commands for direct innate behaviors such as escape or prey capture. What are the molecular
determinants for selective RGC to SC neuron wiring? How are parallel retinotectal circuits sorted onto different
SC laminae and neuronal relays? How are distinct retinotectal circuits linked to defined visual evoked behaviors?
This proposed study aims to answer these questions in the mouse visual system.
To accomplish this goal, first, we will map out parallel retinotectal circuits. We have established an
integrated anterograde-tracing and sequencing platform, Trans-Seq, that defines the outputome of a genetically-
defined RGC subtype. We applied Trans-Seq to all RGC subtypes globally, α-RGCs, and On-Off direction-
selective-ganglion-cells and reconstructed their differential outputomes onto superficial superior-collicular (sSC)
neuron subtypes. We propose to apply Trans-Seq to other major RGC subtypes representing different visual
features. The proposed studies will determine retinotectal circuit convergence and divergence at neuron subtype
resolution. Second, we aim to understand cellular and molecular mechanisms regulating specific retinotectal
circuit wiring. We have analyzed α-RGC specific outputomes and revealed a selective sSC neuron subtype,
Nephronectin-positive-wide-field neurons (NPWFs). The α-RGC-to-NPWF circuit was genetically validated using
imaging, electrophysiology, and retrograde tracing. We propose to study how Nephronectin mediates α-RGC
selective axonal lamination onto the deep sSC layer and whether Nephronectin determines the subsequent
synaptic specificity from α-RGCs to NPWFs. We will also investigate what molecular mechanisms mediate
Nephronectin binding and lead to a selective mammalian retinotectal circuit assembly. Third, we will link specific
retinotectal circuits to defined visual evoked behaviors. We propose to combine genetic and optogenetic tools
established above to determine whether the α-RGC-to-NPWF circuit contributes to visual evoked innate
behaviors, such as looming triggered defense responses. We will also examine whether molecular determinants
for connectivity, such as Nephronectin, regulate this behavioral output via these retinotectal circuits.
Our circuit mapping platform builds a precise connectivity map at neuronal subtype resolution. Further,
this work will align the precise neuronal wiring diagram to innate visual evoked behaviors, informing future
functional and behavioral analysis. The new knowledge gained here may include molecular principles underlying
mammalian circuit wiring relevant beyond the visual system.
项目摘要
神经回路的精确组装确保了准确的神经功能和行为。为
例如,为了将视觉世界的特定方面传达给大脑,视网膜神经节细胞(RGC)找到并
形成突触接触特定的突触后伙伴的异质神经元群体
大脑中的视网膜受体区域。其中一个这样的区域是上级丘(SC),其接收直接视网膜电图。
输入并发送指令,以进行直接的先天行为,如逃跑或捕获猎物。什么是分子
选择性RGC到SC神经元布线的决定因素?平行的视网膜顶盖回路是如何分类到不同的
SC板层和神经元中继?不同的视网膜顶盖回路是如何与定义的视觉诱发行为联系在一起的?
这项研究旨在回答小鼠视觉系统中的这些问题。
为了实现这个目标,首先,我们将绘制平行的视网膜顶盖回路。我们建立了一个
整合的顺向追踪和测序平台,Trans-Seq,它定义了一个基因的输出组,
定义RGC亚型。我们将Trans-Seq应用于全球所有RGC亚型、α-RGC和开-关方向-
选择性神经节细胞,并将其分化的输出细胞重建到浅上丘(sSC)上
神经元亚型我们建议将Trans-Seq应用于代表不同视觉特征的其他主要RGC亚型,
功能.这项研究将确定视网膜顶盖回路在神经元亚型上的会聚和发散
分辨率其次,我们的目标是了解细胞和分子机制,调节特定的视网膜顶盖,
电路布线我们已经分析了α-RGC特异性输出组,并揭示了选择性sSC神经元亚型,
肾连接素阳性宽视野神经元(NPWF)。α-RGC至NPWF回路的遗传学验证采用
成像、电生理和逆行追踪。我们打算研究肾连蛋白如何介导α-RGC
选择性轴突层压到深sSC层,以及肾连蛋白是否决定了随后的
从α-RGCs到NPWF的突触特异性。我们还将研究什么样的分子机制介导
肾连蛋白结合并导致选择性哺乳动物视网膜顶盖电路组装。第三,我们将具体
视网膜顶盖回路到定义的视觉诱发行为。我们建议将联合收割机遗传学和光遗传学工具结合起来
确定α-RGC至NPWF回路是否有助于视觉诱发先天性
行为,如迫在眉睫的触发防御反应。我们还将研究分子决定因素是否
连接,如肾连蛋白,通过这些视网膜顶盖回路调节这种行为输出。
我们的电路映射平台以神经元亚型分辨率构建精确的连接图。此外,本发明的目的是,
这项工作将使精确的神经元接线图与先天视觉诱发行为相一致,为未来的研究提供信息。
功能和行为分析。这里获得的新知识可能包括潜在的分子原理
哺乳动物的电路布线相关的视觉系统以外。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A cognitive process occurring during sleep is revealed by rapid eye movements.
- DOI:10.1126/science.abp8852
- 发表时间:2022-08-26
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Duan其他文献
Xin Duan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Duan', 18)}}的其他基金
MAPPING RETINOTECTAL CIRCUITS FOR VISUAL-EVOKED INNATE BEHAVIORS
绘制视觉诱发先天行为的视网膜环路
- 批准号:
10300917 - 财政年份:2021
- 资助金额:
$ 75.36万 - 项目类别:
MAPPING RETINOTECTAL CIRCUITS FOR VISUAL-EVOKED INNATE BEHAVIORS
绘制视觉诱发先天行为的视网膜环路
- 批准号:
10463759 - 财政年份:2021
- 资助金额:
$ 75.36万 - 项目类别:
Mechanisms Underlying Type II Cadherin Guided Assembly of Retinal Circuits
II 型钙粘蛋白引导视网膜电路组装的潜在机制
- 批准号:
10317067 - 财政年份:2020
- 资助金额:
$ 75.36万 - 项目类别:
Mechanisms Underlying Type II Cadherin Guided Assembly of Retinal Circuits
II 型钙粘蛋白引导视网膜电路组装的潜在机制
- 批准号:
9886125 - 财政年份:2020
- 资助金额:
$ 75.36万 - 项目类别:
Mechanisms Underlying Type II Cadherin Guided Assembly of Retinal Circuits
II 型钙粘蛋白引导视网膜电路组装的潜在机制
- 批准号:
10541108 - 财政年份:2020
- 资助金额:
$ 75.36万 - 项目类别:
Administrative Supplement to NEI - EY030138
NEI 行政补充 - EY030138
- 批准号:
10669952 - 财政年份:2020
- 资助金额:
$ 75.36万 - 项目类别:
Mechanisms Underlying Type II Cadherin Guided Assembly of Retinal Circuits
II 型钙粘蛋白引导视网膜电路组装的潜在机制
- 批准号:
10077558 - 财政年份:2020
- 资助金额:
$ 75.36万 - 项目类别:
相似海外基金
Wireless CMOS device for observing real-time brain activity and animal behavior
用于观察实时大脑活动和动物行为的无线 CMOS 设备
- 批准号:
23K06786 - 财政年份:2023
- 资助金额:
$ 75.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
- 批准号:
RGPIN-2022-03096 - 财政年份:2022
- 资助金额:
$ 75.36万 - 项目类别:
Discovery Grants Program - Individual
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
- 批准号:
RGPIN-2019-06689 - 财政年份:2022
- 资助金额:
$ 75.36万 - 项目类别:
Discovery Grants Program - Individual
Development of Semi-Supervised Learning Method using Compressed Video for Real-Time Animal Behavior Analysis
使用压缩视频进行实时动物行为分析的半监督学习方法的开发
- 批准号:
22H03637 - 财政年份:2022
- 资助金额:
$ 75.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
- 批准号:
DGECR-2022-00323 - 财政年份:2022
- 资助金额:
$ 75.36万 - 项目类别:
Discovery Launch Supplement
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
- 批准号:
10315486 - 财政年份:2021
- 资助金额:
$ 75.36万 - 项目类别:
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
- 批准号:
10412977 - 财政年份:2021
- 资助金额:
$ 75.36万 - 项目类别:
REU Site: Animal Behavior in Context
REU 网站:背景下的动物行为
- 批准号:
2050311 - 财政年份:2021
- 资助金额:
$ 75.36万 - 项目类别:
Standard Grant
Molecular recording to predict cell fate decisions and animal behavior
分子记录预测细胞命运决定和动物行为
- 批准号:
10260139 - 财政年份:2021
- 资助金额:
$ 75.36万 - 项目类别: