Biomolecular Structure and Mechanism, Structure-Based Drug Design

生物分子结构与机制、基于结构的药物设计

基本信息

  • 批准号:
    10702336
  • 负责人:
  • 金额:
    $ 198.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Our goal of structural analysis is to map the reaction trajectory or functional cycle of selected biological macromolecules, and our goal of drug discovery is to design, synthesize, and characterize novel anticancer and antimicrobial agents. To date, we have characterized the reaction trajectory and/or functional cycle of HPPK (a folate pathway enzyme essential for microorganisms but absent in mammals), Era (an essential GTPase that couples cell growth with cell division), RapA (a Swi2/Snf2 protein that recycles RNA polymerase), two members of the RNase III family (a family of dsRNA-specific endoribonucleases), and DDX3X (a DEAD-box helicase that unwinds short RNA duplexes). Among these biomolecules, HPPK is a target for novel antibacterial agents, and DDX3X is a target of novel anticancer and anti-HIV agents. Structure-based drug development is in progress. Representative members of the RNase III family include prokaryotic RNase III and eukaryotic Rnt1p, Drosha, and Dicer. They play important roles in RNA processing and maturation, post-transcriptional gene silencing, and defense against viral infection. For mechanistic studies, bacterial enzyme is a valuable model system for the entire family. We have shown how the dimerization of the RNase III endonuclease domain (RIIID) creates a catalytic valley where two cleavage sites are located, how the catalytic valley accommodates a dsRNA in a manner such that each of the two RNA strands is aligned with one of the two cleavage sites, how the hydrolysis of each strand involves both RIIIDs, and how RNase III uses the two cleavage sites to create the 2-nucleotide (2-nt) 3' overhangs in its products. We have also shown how magnesium is essential for the formation of a catalytically competent protein-RNA complex, how the use of two magnesium ions can drive the hydrolysis of each phosphodiester bond, and how conformational changes in both the substrate and the protein are critical elements for assembling the catalytic complex. Moreover, we have provided a stepwise trajectory by which RNase III executes the phosphoryl transfer reaction. As informative as the bacterial enzyme for the mechanism of RNase III action, yeast Rnt1p is a valuable model system for eukaryotic RNase III enzymes. Unlike bacterial enzymes that use four catalytic side chains, eukaryotic RNase IIIs use six. It is also distinguished from bacterial enzymes that every eukaryotic RNase III has an N-terminal extension. What is more, Rnt1p exhibits a strict guanine nucleotide specificity, which is unique among RNase III enzymes. We have shown how the substrate-binding mode of Rnt1p is distinct from that of bacterial RNase III, how all six catalytic side chains are engaged in the cleavage site, how a new RNA-binding motif of Rnt1p functions as a guanine-specific clamp, and how the dsRNA-binding domain and N-terminal domain of Rnt1p function as two rulers measuring the distances between the guanine nucleotide to the two cleavage sites. This unusual mechanism of substrate selectivity represents an example of the evolution of substrate selectivity. All members of the RNase III family propel RNA hydrolysis by two-Mg2+-ion catalysis. We have also provided a stepwise trajectory by which Rnt1p executes the phosphoryl transfer reaction. The structural basis for the reaction trajectory of two-Mg2+-ion catalysis is provided by the crystal structure of a postcleavage complex determined at a stage immediately after the cleavage of the phosphodiester bond, for which we have determined high-resolution structures for both bacterial RNase III and yeast Rnt1p. These postcleavage structures reveal distinct features of two-Mg2+-ion catalysis by prokaryotic and eukaryotic RNase III enzymes, including Drosha and Dicer, for which the available structures fail to provide the basis of two-Mg2+-ion catalysis. DDX3X belongs to the family of DEAD-box helicases that regulate RNA processing and metabolism by unwinding short RNA duplexes. Sharing a helicase core composed of two RecA-like domains (D1D2), DDXs function in an ATP-dependent, non-processive manner. As an attractive target for cancer and AIDS treatment, DDX3X and its orthologs are extensively studied, yielding a wealth of biochemical and biophysical data, including structures of apo-D1D2 and post-unwound D1D2:ssRNA complex. However, the structure of a pre-unwound D1D2:dsRNA complex was not available until we have recently determined the crystal structure of a D1D2 core in complex with a 2-turn RNA duplex at the pre-unwound state, showing that two DDXs recognize the RNA duplex. Each DDX mainly recognizes a single strand, and conformational changes induced by ATP binding unwinds the RNA duplex in a cooperative manner. Our new structure has significantly altered a previous model of three-molecule cooperativity. To validate our new model, we are currently elucidating the functional cycle of DDX3X using site-directed mutagenesis, RNA-unwinding assay, ATP-hydrolyzing assay, Hill cooperativity analysis, and structural studies. We have also started to develop DDX3X inhibitors based on available structural and mechanistic information. We carry out structure-based drug development primarily as a continuation of our basic research on the structure and mechanism of biomolecular systems with anticancer and antimicrobial significance. Previously, we designed PABA/NO, an enzymatically activated anticancer prodrug that kills cancer cells from within by releasing nitric oxide. We also made significant progress toward novel antibacterial agents targeting HPPK by the design and synthesis of linked purine pterin inhibitors and the determination of their crystal structures in complex with the enzyme. Recently, we have further developed both the PABA/NO and HPPK inhibitors. The PABA/NO derivative contains a PARP inhibitor and so it not only generates nitric oxide but also release a PARP inhibitor simultaneously in the same compartment, which damage DNA and inhibit its repair (PMID: 24521039; US Patent Number: 9168266). The improved HPPK inhibitors mimic closely the transition state of the catalytic complex and thereby have much higher potency (PMID: 33199204; US Patent Number: 11091509).

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XINHUA JI其他文献

XINHUA JI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XINHUA JI', 18)}}的其他基金

CRYSTAL STRUCT OF ERA GTPASE DEPENDENT CELL CYCLE REGULATOR W/ RNA BINDING MOTIF
具有 RNA 结合基序的 ERA GTPase 依赖性细胞周期调节剂的晶体结构
  • 批准号:
    6205774
  • 财政年份:
    1999
  • 资助金额:
    $ 198.2万
  • 项目类别:
SYNCHROTRON CRYSTALLOGRAPHY OF GTPASES & GUANYLATE KINASES
GTP酶的同步加速器晶体学
  • 批准号:
    6120419
  • 财政年份:
    1998
  • 资助金额:
    $ 198.2万
  • 项目类别:
SYNCHROTRON CRYSTALLOG OF 7,8 DIHYDRO 6 HYDROXYMETHYLPTERIN PYROPHOSPHOKINASE
7,8 二氢 6 羟甲基蝶呤焦磷酸激酶的同步加速器晶体
  • 批准号:
    6120420
  • 财政年份:
    1998
  • 资助金额:
    $ 198.2万
  • 项目类别:
Structural Chemistry of Biomolecular Systems and Structu
生物分子系统和结构的结构化学
  • 批准号:
    7338457
  • 财政年份:
  • 资助金额:
    $ 198.2万
  • 项目类别:
Biomolecular Structure and Mechanism, Structure-Based Drug Design
生物分子结构与机制、基于结构的药物设计
  • 批准号:
    7592663
  • 财政年份:
  • 资助金额:
    $ 198.2万
  • 项目类别:
Biomolecular Structure and Mechanism, Structure-Based Drug Design
生物分子结构与机制、基于结构的药物设计
  • 批准号:
    8175306
  • 财政年份:
  • 资助金额:
    $ 198.2万
  • 项目类别:
Structural of Biomolecular Systems by X Ray Diffraction
通过 X 射线衍射分析生物分子系统的结构
  • 批准号:
    6559206
  • 财政年份:
  • 资助金额:
    $ 198.2万
  • 项目类别:
Biomolecular Structure and Mechanism, Structure-Based Drug Design
生物分子结构与机制、基于结构的药物设计
  • 批准号:
    7965248
  • 财政年份:
  • 资助金额:
    $ 198.2万
  • 项目类别:
Biomolecular Structure and Mechanism, Structure-Based Drug Design
生物分子结构与机制、基于结构的药物设计
  • 批准号:
    7732999
  • 财政年份:
  • 资助金额:
    $ 198.2万
  • 项目类别:
Biomolecular Structure and Mechanism, Structure-Based Drug Design
生物分子结构与机制、基于结构的药物设计
  • 批准号:
    10926000
  • 财政年份:
  • 资助金额:
    $ 198.2万
  • 项目类别:

相似海外基金

RESEARCH SUPPORT SERVICES FOR THE DIVISION OF ACQUIRED IMMUNODEFICIENCY SYNDROME
获得性免疫缺陷综合症分类的研究支持服务
  • 批准号:
    10219039
  • 财政年份:
    2020
  • 资助金额:
    $ 198.2万
  • 项目类别:
RESEARCH SUPPORT SERVICES FOR THE DIVISION OF ACQUIRED IMMUNODEFICIENCY SYNDROME
获得性免疫缺陷综合症分类的研究支持服务
  • 批准号:
    9981476
  • 财政年份:
    2019
  • 资助金额:
    $ 198.2万
  • 项目类别:
IGF::OT::IGF RESEARCH SUPPORT SERVICES FOR THE DIVISION OF ACQUIRED IMMUNODEFICIENCY SYNDROME
IGF::OT::IGF 针对获得性免疫缺陷综合症分类的研究支持服务
  • 批准号:
    9364184
  • 财政年份:
    2016
  • 资助金额:
    $ 198.2万
  • 项目类别:
Human Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS) in Saskatchewan- Where are we now and what does the future hold?
萨斯喀彻温省的人类免疫缺陷病毒(HIV)和获得性免疫缺陷综合症(艾滋病)——我们现在在哪里以及未来会怎样?
  • 批准号:
    236932
  • 财政年份:
    2011
  • 资助金额:
    $ 198.2万
  • 项目类别:
    Miscellaneous Programs
ACQUIRED IMMUNODEFICIENCY SYNDROME RESEARCH REVIEW COMMI
获得性免疫缺陷综合症研究审查委员会
  • 批准号:
    3554155
  • 财政年份:
    1991
  • 资助金额:
    $ 198.2万
  • 项目类别:
ACQUIRED IMMUNODEFICIENCY SYNDROME REVIEW
获得性免疫缺陷综合症审查
  • 批准号:
    6766860
  • 财政年份:
    1991
  • 资助金额:
    $ 198.2万
  • 项目类别:
ACQUIRED IMMUNODEFICIENCY SYNDROME REVIEW
获得性免疫缺陷综合症审查
  • 批准号:
    6256640
  • 财政年份:
    1991
  • 资助金额:
    $ 198.2万
  • 项目类别:
ACQUIRED IMMUNODEFICIENCY SYNDROME RESEARCH REVIEW COMMI
获得性免疫缺陷综合症研究审查委员会
  • 批准号:
    3554156
  • 财政年份:
    1991
  • 资助金额:
    $ 198.2万
  • 项目类别:
ACQUIRED IMMUNODEFICIENCY SYNDROME RESEARCH REVIEW
获得性免疫缺陷综合症研究综述
  • 批准号:
    2063342
  • 财政年份:
    1991
  • 资助金额:
    $ 198.2万
  • 项目类别:
ACQUIRED IMMUNODEFICIENCY SYNDROME REVIEW
获得性免疫缺陷综合症审查
  • 批准号:
    6091256
  • 财政年份:
    1991
  • 资助金额:
    $ 198.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了