Molecular analysis of genetic recombination and DNA break repair
基因重组和DNA断裂修复的分子分析
基本信息
- 批准号:10681208
- 负责人:
- 金额:$ 97.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AchievementAntibioticsAreaBacteriaBacteriophage lambdaBiochemicalCellsCentenarianChromosomal RearrangementChromosome SegregationChromosomesComplexCongenital AbnormalityDNADNA Double Strand BreakDNA RepairDNA analysisDataEnsureEnzymesEscherichia coliExodeoxyribonuclease VFailureFission YeastFluorescence MicroscopyGenerationsGeneticGenetic RecombinationGoalsHumanInfertilityLifeMalignant NeoplasmsMeiosisMeiotic RecombinationMolecularMolecular AnalysisOrganismPathway interactionsProtein AnalysisProteinsResearchSiteTimebiophysical analysiscombatdrug resistant bacteriagenetic analysisinhibitormodel organismmutantnovelnucleaseprogramsrepairedthree dimensional structure
项目摘要
Project Summary/Abstract
The long-term goal of the research proposed here is to determine the molecular mechanism of homologous
genetic recombination and DNA break repair. This objective is approached by a combination of genetic
analysis of mutants and biochemical analysis of proteins and DNA from cells. This research uses the fission
yeast Schizosaccharomyces pombe as well as the bacterium Escherichia coli and its phage lambda. All are
widely studied, highly tractable model organisms with features common to all organisms, including humans.
The studies are focused on meiotic recombination in S. pombe, whose high rates of recombination facilitate
both genetic and biochemical analyses, and on the major pathway of recombination and DNA break repair in
bacteria, promoted by RecBCD enzyme, a complex DNA repair machine, whose 3D structure allows us to
determine at atomic level how recombination initiation is regulated.
Building on past achievements, the research is currently focused on the following areas. 1) Studying
how meiotic DNA double-strand break (DSB) hotspots form clusters, and how these clusters impart DSB
interference and, consequently, crossover interference important for proper chromosome segregation. This
research promises to solve the 100-year-old problem of crossover interference, a major genetic puzzle for
which we have proposed a molecular mechanism and supported with many data. 2) Studying how RecBCD
enzyme controls its potentially rampant nuclease activity and appropriately activates it by interaction with Chi
hotspots of recombination (5’ GCTGGTGG 3’). This research promises to solve at near-atomic level the
molecular mechanism of RecBCD enzyme, the principal controller of the major pathway of E. coli
recombination, first observed 75 years ago, and a paradigm for chromosomal site control of other complex
DNA enzymes. 3) Seeking more potent RecBCD inhibitors, which are promising antibiotics against a novel
(unused) target. New antibiotics are needed to counter ever-more-frequent drug-resistant bacteria. These
goals will be attacked by a combination of genetic analysis of mutants, fluorescence microscopy of intracellular
proteins and chromosomal sites, physical analysis of DNA intermediates from meiotic cells, and enzymatic and
biophysical analyses of isolated proteins. The results of these studies will elucidate the molecular mechanism
of recombination and DNA break repair as well as the controls on recombination that ensure that it occurs at
the proper time and place along chromosomes.
Recombination is important for faithful meiotic chromosome segregation, error-free repair of frequently
arising DNA double-strand breaks, and generation of cellular and organismal diversity. Aberrancies of
recombination can generate chromosomal rearrangements, such as translocations, duplications, and deletions,
which are often associated with or the cause of infertility, birth defects, and cancers.
项目总结/摘要
这里提出的研究的长期目标是确定同源的分子机制,
基因重组和DNA断裂修复。这一目标是通过遗传学的组合来实现的。
突变体分析和来自细胞的蛋白质和DNA的生化分析。这项研究利用裂变
酵母裂殖酵母以及大肠杆菌及其噬菌体λ。都是
被广泛研究的高度易处理的模式生物,具有包括人类在内的所有生物的共同特征。
本研究主要集中在S.粟酒,其高重组率促进
遗传和生化分析,以及重组和DNA断裂修复的主要途径,
细菌,由RecBCD酶促进,RecBCD酶是一种复杂的DNA修复机器,其3D结构使我们能够
在原子水平上确定重组起始是如何被调节的。
在过去成就的基础上,目前的研究重点是以下领域。1)研究
减数分裂DNA双链断裂(DSB)热点如何形成簇,以及这些簇如何赋予DSB
干扰,因此,交叉干扰对于正确的染色体分离是重要的。这
研究有望解决100年来的交叉干扰问题,这是一个主要的遗传难题,
我们已经提出了一个分子机制,并得到了许多数据的支持。2)研究RecBCD如何
酶控制其潜在的猖獗的核酸酶活性,并通过与Chi相互作用适当地激活它。
重组热点(5 ′ GCTGGTGG 3 ′)。这项研究有望在近原子水平上解决
RecBCD酶是E.杆菌
重组,首次观察到75年前,和一个范例的染色体位点控制的其他复杂
DNA酶。3)寻找更有效的RecBCD抑制剂,这是一种有前途的抗生素,
(未使用)目标。需要新的抗生素来对抗越来越频繁的耐药细菌。这些
目标将通过突变体的遗传分析,细胞内荧光显微镜
蛋白质和染色体位点,来自减数分裂细胞的DNA中间体的物理分析,以及酶和
分离的蛋白质的生物物理分析。这些研究的结果将阐明分子机制
重组和DNA断裂修复以及控制重组,确保它发生在
在染色体上的正确时间和位置
减数分裂染色体的分离是重要的,经常无错误的修复,
引起DNA双链断裂,以及细胞和生物多样性的产生。畸变
重组可产生染色体重排,如易位、复制和缺失,
这些疾病通常与不孕症、出生缺陷和癌症有关,或者是它们的原因。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Meiotic chromosome organization and its role in recombination and cancer
减数分裂染色体组织及其在重组和癌症中的作用
- DOI:10.1016/bs.ctdb.2022.04.008
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Morgan Chris;Nayak Aditya;Hosoya Noriko;Smith Gerald R.;Lambing Christophe
- 通讯作者:Lambing Christophe
New Solutions to Old Problems: Molecular Mechanisms of Meiotic Crossover Control.
- DOI:10.1016/j.tig.2020.02.002
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Gerald R. Smith;Mridula Nambiar
- 通讯作者:Gerald R. Smith;Mridula Nambiar
Quantitative Genome-Wide Measurements of Meiotic DNA Double-Strand Breaks and Protein Binding in S. pombe.
粟酒裂殖酵母减数分裂 DNA 双链断裂和蛋白质结合的全基因组定量测量。
- DOI:10.1007/978-1-4939-6340-9_2
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Hyppa,RandyW;Fowler,KyleR;Smith,GeraldR
- 通讯作者:Smith,GeraldR
RecBCD enzyme and Chi recombination hotspots as determinants of self vs. non-self: Myths and mechanisms.
- DOI:10.1016/bs.adgen.2022.06.001
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Subramaniam, Suriyen;Smith, Gerald R
- 通讯作者:Smith, Gerald R
Activation of meiotic recombination by nuclear import of the DNA break hotspot-determining complex in fission yeast.
通过在裂殖酵母中导入 DNA 断裂热点决定复合物来激活减数分裂重组。
- DOI:10.1242/jcs.253518
- 发表时间:2021
- 期刊:
- 影响因子:4
- 作者:Wintrebert,Mélody;Nguyen,Mai-Chi;Smith,GeraldR
- 通讯作者:Smith,GeraldR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GERALD R SMITH其他文献
GERALD R SMITH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GERALD R SMITH', 18)}}的其他基金
Molecular analysis of genetic recombination and DNA break repair
基因重组和DNA断裂修复的分子分析
- 批准号:
10393658 - 财政年份:2016
- 资助金额:
$ 97.11万 - 项目类别:
Molecular analysis of genetic recombination and DNA break repair
基因重组和DNA断裂修复的分子分析
- 批准号:
10206809 - 财政年份:2016
- 资助金额:
$ 97.11万 - 项目类别:
Molecular analysis of genetic recombination and DNA break repair
基因重组和DNA断裂修复的分子分析
- 批准号:
9071448 - 财政年份:2016
- 资助金额:
$ 97.11万 - 项目类别:
Molecular analysis of genetic recombination and DNA break repair
基因重组和DNA断裂修复的分子分析
- 批准号:
10616246 - 财政年份:2016
- 资助金额:
$ 97.11万 - 项目类别:
Molecular analysis of genetic recombination and DNA break repair
基因重组和DNA断裂修复的分子分析
- 批准号:
9256509 - 财政年份:2016
- 资助金额:
$ 97.11万 - 项目类别:
Molecular analysis of genetic recombination and DNA break repair
基因重组和DNA断裂修复的分子分析
- 批准号:
9922322 - 财政年份:2016
- 资助金额:
$ 97.11万 - 项目类别:
Novel Antibacterial Drugs Targeting DNA Repair Enzymes
针对 DNA 修复酶的新型抗菌药物
- 批准号:
7707080 - 财政年份:2009
- 资助金额:
$ 97.11万 - 项目类别:
Novel Antibacterial Drugs Targeting DNA Repair Enzymes
针对 DNA 修复酶的新型抗菌药物
- 批准号:
7876767 - 财政年份:2009
- 资助金额:
$ 97.11万 - 项目类别:
Molecular Analysis of Hotspots of Genetic Recombination
基因重组热点的分子分析
- 批准号:
7892066 - 财政年份:2009
- 资助金额:
$ 97.11万 - 项目类别:
GENETIC AND CYTOLOGICAL ANALYSIS OF FISSION YEAST
裂殖酵母的遗传和细胞学分析
- 批准号:
2861450 - 财政年份:2000
- 资助金额:
$ 97.11万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 97.11万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 97.11万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 97.11万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 97.11万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 97.11万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 97.11万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 97.11万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 97.11万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 97.11万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 97.11万 - 项目类别:
Studentship