Explainable, Fair, Reproducible and Collaborative Surgical Artificial Intelligence: Integrating data, algorithms and clinical reasoning for surgical risk assessment (XAI-IDEALIST)
可解释、公平、可重复和协作的手术人工智能:整合数据、算法和临床推理以进行手术风险评估(XAI-IDEALIST)
基本信息
- 批准号:10681418
- 负责人:
- 金额:$ 54.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptedAlgorithmsAmericanArtificial IntelligenceArtificial Intelligence platformBehavioralBenchmarkingBridge to Artificial IntelligenceClinicalClinical ResearchClinical TrialsCognitiveCollaborationsComplicationComputing MethodologiesCritical CareDataData PoolingData SetEarly InterventionEnvironmentEthicsEvaluationFloridaFoundationsFundingGenerationsHealthHospital CostsHospitalizationHospitalsHumanInformaticsInfrastructureInstitutionIntelligenceInvestmentsLegal patentMachine LearningMedicalMindMissionModelingOperative Surgical ProceduresPatient CarePatient-Focused OutcomesPatientsPerformancePerioperative CarePhysiciansPhysiologicalPopulation HeterogeneityPostoperative ComplicationsPrevention strategyPrivacyProcessProductivityPsyche structurePublic HealthPublicationsReproducibilityResearchRiskRisk AssessmentScienceSystemTechnologyTestingTimeTrainingTrustUnited StatesUnited States National Institutes of HealthUniversitiesValidationWorkadvanced diseaseclinical implementationcollaborative approachcomputerized toolsdata integrationdata modelingdata sharingdata streamsdisease diagnosisdistributed dataeffectiveness evaluationfederated learninghigh riskhuman centered computingimprovedinnovationinteroperabilitymachine learning algorithmmultimodal datamultimodalitynoveloperationpreferenceprivacy preservationprogramsprospectiveprospective testrisk mitigationsocial health determinantssuccesssurgical risktheoriestooltrustworthinessusability
项目摘要
Project Summary
In the United States, the average American can expect to undergo seven surgical operations during a lifetime.
Each year 150,000 surgical patients die, and 1.5 million develop a complication after surgery. Progress in
medical Artificial Intelligence (AI) remains halted by limited datasets and models with insufficient interpretability,
transparency, fairness, and reproducibility that are difficult to implement and share across institutions. In the
previous funding period, in addition to 98 publications and 3 patents, a real-time intelligent surgical risk
assessment system was successfully implemented at University of Florida. The overall objective of this
renewal application is to develop a new conceptual framework for “Explainable, Fair, Reproducible, and
Collaborative Medical AI” to provide a foundation for clinical implementation at scale. It will leverage the
OneFlorida, a large clinical consortium of 22 hospitals serving 10 million patients in Florida, the nation’s third
largest state. The overall objective will be achieved by pursuing three specific aims.
(1) External and prospective validation of novel interpretable, dynamic, actionable, fair and reproducible
algorithmic toolkit for real-time surgical risk surveillance. (2) Developing and evaluating explainable AI platform
(XAI-IDEALIST) for real-time surgical risk surveillance using human-grounded benchmarks. (3) Implementing
and evaluating a federated learning approach with advanced privacy features for collaborative surgical risk
model training. The approach is innovative, because it represents the first attempt to (1) build the first surgical
FAIR (Findable, Accessible, Interoperable, Reproducible) AI-ready, large multicenter multimodal dataset, (2)
Novel computational approaches accompanied by assessing fairness and reproducibility, (3) a multifaceted
and full-stack explainable AI framework, and (4) federated learning capacity for privacy-preserving model
trainingacross institutions. The proposed research is significant since it will address several key problems and
critical barriers, including (1) lack of AI-ready large surgical datasets, (2) lack of interpretable, dynamic,
actionable, fair and reproducible surgical risk algorithms, (2) lack of a medical AI explainability platform, and (4)
lack of a systematic approach for collaborative model training and sharing across institutions. Ultimately, the
results are expected to improve patient outcomes and decrease hospitalization costs, as well as lifelong
complications.
项目摘要
在美国,平均每个美国人一生中要做七次外科手术。
每年有15万名外科病人死亡,150万人在手术后出现并发症。进展
医疗人工智能(AI)仍然因有限的数据集和模型而停滞不前,这些数据集和模型的可解释性不足,
透明度、公平性和可重复性,这些都很难在各机构间实现和共享。在
上一个资助期,除了98篇出版物和3项专利外,还有实时智能手术风险
评估系统在佛罗里达大学成功实施。本报告的总体目标
续期申请是为了发展一个新的概念框架,以“可解释,公平,可再现,
协作医疗AI”为大规模临床实施提供基础。它将利用
一个佛罗里达,一个由22家医院组成的大型临床联盟,为全国第三大城市佛罗里达的1000万名患者提供服务。
最大的州。将通过三个具体目标实现总体目标。
(1)外部和前瞻性验证新的可解释性、动态性、可操作性、公平性和可重现性
实时手术风险监控的算法工具包。(2)开发和评估可解释的AI平台
(XAI-IDEALIST)使用基于人为的基准进行实时手术风险监测。(3)实施
并评估具有高级隐私功能的联合学习方法,以降低协作手术风险
模型训练这种方法是创新的,因为它代表了第一次尝试(1)建立第一个外科手术
FAIR(可查找、可解释、可互操作、可再现)AI就绪、大型多中心多模式数据集,(2)
新的计算方法伴随着评估公平性和可重复性,(3)多方面的
和全栈可解释的AI框架,以及(4)隐私保护模型的联邦学习能力
training训练across横过institutions机构.拟议的研究是重要的,因为它将解决几个关键问题,
关键障碍,包括(1)缺乏AI就绪的大型手术数据集,(2)缺乏可解释的,动态的,
可操作、公平和可重现的手术风险算法,(2)缺乏医疗AI可解释性平台,以及(4)
缺乏系统的方法来进行协作模式培训和机构间共享。最终
结果有望改善患者的预后,降低住院费用,
并发症
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kidney and Brain, an Unbroken Chain.
肾脏和大脑,一条不间断的链条。
- DOI:10.1164/rccm.201611-2371ed
- 发表时间:2017
- 期刊:
- 影响因子:24.7
- 作者:Bihorac,Azra;Hobson,Charles
- 通讯作者:Hobson,Charles
Metabolomic Profiling for Diagnosis and Prognostication in Surgery: A Scoping Review.
- DOI:10.1097/sla.0000000000003935
- 发表时间:2021-02-01
- 期刊:
- 影响因子:9
- 作者:Khan TA;Loftus TJ;Filiberto AC;Ozrazgat-Baslanti T;Ruppert MM;Bandyopadhyay S;Laiakis EC;Arnaoutakis DJ;Bihorac A
- 通讯作者:Bihorac A
Cardiac and Vascular Surgery-Associated Acute Kidney Injury: The 20th International Consensus Conference of the ADQI (Acute Disease Quality Initiative) Group.
心脏和血管外科相关的急性肾脏损伤:第20届ADQI国际共识会议(急性疾病质量倡议)小组。
- DOI:10.1161/jaha.118.008834
- 发表时间:2018-06-01
- 期刊:
- 影响因子:5.4
- 作者:Nadim MK;Forni LG;Bihorac A;Hobson C;Koyner JL;Shaw A;Arnaoutakis GJ;Ding X;Engelman DT;Gasparovic H;Gasparovic V;Herzog CA;Kashani K;Katz N;Liu KD;Mehta RL;Ostermann M;Pannu N;Pickkers P;Price S;Ricci Z;Rich JB;Sajja LR;Weaver FA;Zarbock A;Ronco C;Kellum JA
- 通讯作者:Kellum JA
Computable Phenotypes to Characterize Changing Patient Brain Dysfunction in the Intensive Care Unit.
可计算表型来表征重症监护病房中不断变化的患者脑功能障碍。
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ren,Yuanfang;Loftus,TylerJ;Guan,Ziyuan;Uddin,Rayon;Shickel,Benjamin;Maciel,CarolinaB;Busl,Katharina;Rashidi,Parisa;Bihorac,Azra;Ozrazgat-Baslanti,Tezcan
- 通讯作者:Ozrazgat-Baslanti,Tezcan
The Pattern of Longitudinal Change in Serum Creatinine and 90-Day Mortality After Major Surgery.
大手术后血清肌酐和 90 天死亡率的纵向变化模式。
- DOI:10.1097/sla.0000000000001362
- 发表时间:2016-06
- 期刊:
- 影响因子:9
- 作者:Korenkevych D;Ozrazgat-Baslanti T;Thottakkara P;Hobson CE;Pardalos P;Momcilovic P;Bihorac A
- 通讯作者:Bihorac A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Azra Bihorac其他文献
Azra Bihorac的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Azra Bihorac', 18)}}的其他基金
Bridge2AI: Patient-Focused Collaborative Hospital Repository Uniting Standards (CHoRUS) for Equitable AI
Bridge2AI:以患者为中心的协作医院存储库统一标准 (CHORUS),实现公平的人工智能
- 批准号:
10858694 - 财政年份:2022
- 资助金额:
$ 54.2万 - 项目类别:
Bridge2AI: Patient-Focused Collaborative Hospital Repository Uniting Standards (CHoRUS) for Equitable AI
Bridge2AI:以患者为中心的协作医院存储库统一标准 (CHORUS),实现公平的人工智能
- 批准号:
10472824 - 财政年份:2022
- 资助金额:
$ 54.2万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10414976 - 财政年份:2021
- 资助金额:
$ 54.2万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10594086 - 财政年份:2021
- 资助金额:
$ 54.2万 - 项目类别:
ADAPT: Autonomous Delirium Monitoring and Adaptive Prevention
ADAPT:自主谵妄监测和适应性预防
- 批准号:
10396041 - 财政年份:2021
- 资助金额:
$ 54.2万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10609525 - 财政年份:2021
- 资助金额:
$ 54.2万 - 项目类别:
ADAPT: Autonomous Delirium Monitoring and Adaptive Prevention
ADAPT:自主谵妄监测和适应性预防
- 批准号:
10178157 - 财政年份:2021
- 资助金额:
$ 54.2万 - 项目类别:
Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
- 批准号:
10154047 - 财政年份:2021
- 资助金额:
$ 54.2万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10209005 - 财政年份:2021
- 资助金额:
$ 54.2万 - 项目类别:
Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
- 批准号:
10580785 - 财政年份:2021
- 资助金额:
$ 54.2万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 54.2万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 54.2万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 54.2万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 54.2万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 54.2万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 54.2万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 54.2万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 54.2万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 54.2万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 54.2万 - 项目类别:
Research Grant