Sustainable biocatalytic generation of bioactive tropolone natural products

生物活性托酚酮天然产物的可持续生物催化生成

基本信息

项目摘要

PROPOSAL SUMMARY For years, nature has been the source for health remedies in traditional medicine, using plants and fungi for their curative benefits for over 2000 years. We can now attribute the benefits of these traditional treatments to natural products generated in their biosynthetic pathways. Moreover, natural products have been a consistent source of inspiration and resource in the development of alternative therapeutics. However, studies show that there is a gap in knowledge on these alternatives which is rooted in a lack of evidence-based information on their efficacy, hindering their application in mainstream medicine. Therefore, it is imperative to develop strategies that could allow to reach the valuable molecules that give these sources their medicinal power. A subset of natural products contains tropolone rings in their structures and have shown to have great therapeutic potential for treating cancer, malaria, bacterial and fungal infections as well as cardiovascular, renal, and inflammatory diseases. The tropolone moiety commonly acts as a pharmacophore, making it a valuable target to synthetically access and evaluate. However, the complex nature of the aromatic seven-membered tropolone ring limits the sustainability of their large-scale production, this reflected in common synthetic methods being hindered by low yields, diverse functional group tolerance, and the need for hazardous and costly reagents. Conversely, nature has evolved biocatalysts that enable direct routes to diversely functionalized tropolones such as the fungal α-ketoglutarate dependent non-heme iron dioxygenase XenC, bypassing the general setbacks of traditional synthetic methods. Nonetheless, the applicability of this enzymatic method remains hindered by the concentration of substrate that XenC can tolerate, the required two-step reaction sequence, and the limited substrate scope that prevents the practical applications of this approach to access a plethora of tropolone natural products. In the efforts of improving the scalability, sustainability, and broader applicability of this biocatalytic method towards accessing bioactive tropolones, I aim to engineer XenC into an enzyme that tolerates higher substrate loadings, works in a sustainable one-pot cascaded at pH 8, and has a broader non-native substrate scope. The successfully evolved enzymes and the developed biocatalytic platform will enable novel chemoenzymatic syntheses of tropolone sesquiterpenes, fungal marine tropolones, and tropolone alkaloids, providing a scalable and sustainable strategy that allows to reach diverse tropolones and analogs to facilitate their in-depth pharmacological studies. In turn, this will impulse the development of novel medicine alternatives with the purpose of treating human-health concerns including infections, inflammation, malaria, and cancer.
提案摘要 多年来,大自然一直是传统医学中健康疗法的来源,利用植物和真菌来治疗疾病。 2000多年来的疗效。我们现在可以把这些传统疗法的好处归功于自然 生物合成途径中产生的产物。此外,天然产品一直是 在替代疗法的发展的灵感和资源。然而,研究表明, 对这些替代品的认识存在差距,其根源在于缺乏关于其功效的循证信息, 阻碍了它们在主流医学中的应用。因此,必须制定战略, 让我们能够接触到有价值的分子,这些分子赋予这些资源药用价值。天然产物的一个子集 在其结构中含有环庚三烯酚酮环并且已经显示出具有治疗癌症的巨大治疗潜力, 疟疾、细菌和真菌感染以及心血管、肾脏和炎性疾病。的 环庚三烯酚酮部分通常充当药效团,使其成为合成获得和 评估。然而,芳族七元环酚酮环的复杂性质限制了其可持续性 他们的大规模生产,这反映在共同的合成方法受到低产率,多样性, 官能团耐受性,以及需要危险和昂贵的试剂。相反,自然界已经进化 生物催化剂,其使得能够直接路线到二硫代官能化的环庚三烯酚酮,例如真菌α-酮戊二酸 依赖性非血红素铁双加氧酶XenC,绕过了传统合成方法的一般挫折。 尽管如此,这种酶促方法的适用性仍然受到底物浓度的阻碍, XenC可以容忍所需的两步反应顺序,以及有限的底物范围,这阻止了反应的进行。 这种方法的实际应用获得了大量的环酚酮天然产物。的努力中 提高这种生物催化方法的可扩展性、可持续性和更广泛的适用性, 我的目标是将XenC改造成一种能够耐受更高底物负荷的酶, 可持续的一锅法在pH 8下级联,并且具有更广泛的非天然底物范围。成功进化的 酶和开发的生物催化平台将使新的化学酶合成的托酚酮 倍半萜烯、真菌海洋托酚酮和托酚酮生物碱,提供可扩展和可持续的战略 这使得可以达到不同的托酚酮和类似物,以促进其深入的药理学研究。反过来, 这将推动以治疗人类健康为目的的新型药物替代品的开发 包括感染、炎症、疟疾和癌症。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose R. Hernandez-Melendez其他文献

Jose R. Hernandez-Melendez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Iboga alkaloids骨架导向的不对称串联反应构建吖庚环并[4,5-b]吲哚及其在全合成中的应用
  • 批准号:
    21801032
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigation on naphthylisoquinoline alkaloids as potential antiausterity chemotherapy for pancreatic cancer
萘基异喹啉生物碱作为胰腺癌潜在抗紧缩化疗的研究
  • 批准号:
    23K26797
  • 财政年份:
    2024
  • 资助金额:
    $ 4.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Chemoenzymatic Synthesis of Complex Polycyclic Alkaloids Enabled by A-Ketoglutarate Dependent Iron Enzymes
职业:通过 A-酮戊二酸依赖性铁酶实现复杂多环生物碱的化学酶法合成
  • 批准号:
    2338495
  • 财政年份:
    2024
  • 资助金额:
    $ 4.03万
  • 项目类别:
    Continuing Grant
Strategy Driven Synthesis of Complex Alkaloids
复杂生物碱的策略驱动合成
  • 批准号:
    2400232
  • 财政年份:
    2024
  • 资助金额:
    $ 4.03万
  • 项目类别:
    Standard Grant
Synthesis of guanidine alkaloids based on palladium catalyzed cyclization-carbonylation reactions.
基于钯催化环化-羰基化反应合成胍生物碱。
  • 批准号:
    23K06034
  • 财政年份:
    2023
  • 资助金额:
    $ 4.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation on naphthylisoquinoline alkaloids as potential antiausterity chemotherapy for pancreatic cancer
萘基异喹啉生物碱作为胰腺癌潜在抗紧缩化疗的研究
  • 批准号:
    23H02104
  • 财政年份:
    2023
  • 资助金额:
    $ 4.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Anthropogenic change and disease susceptibility in poison frogs: identifying links with diet, skin alkaloids, and the microbiome
毒蛙的人为变化和疾病易感性:确定与饮食、皮肤生物碱和微生物组的联系
  • 批准号:
    2882384
  • 财政年份:
    2023
  • 资助金额:
    $ 4.03万
  • 项目类别:
    Studentship
Synthesis of Anticancer Alkaloids on Cancer Cells with Glycosylated Artificial Metalloenzymes
糖基化人工金属酶合成抗癌细胞生物碱
  • 批准号:
    22KJ1525
  • 财政年份:
    2023
  • 资助金额:
    $ 4.03万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Discovery of analgesic diterpenoid alkaloids from medicinal Aconitum plants using a metabolomic approach
使用代谢组学方法从药用乌头植物中发现镇痛二萜生物碱
  • 批准号:
    10629875
  • 财政年份:
    2023
  • 资助金额:
    $ 4.03万
  • 项目类别:
Excellence in Research: Biosynthetic investigation of manzamine class alkaloids
卓越研究:曼扎明类生物碱的生物合成研究
  • 批准号:
    2302454
  • 财政年份:
    2023
  • 资助金额:
    $ 4.03万
  • 项目类别:
    Standard Grant
Transition Metal-Catalyzed Reaction Development Toward the Synthesis of Alkaloids
过渡金属催化生物碱合成反应的进展
  • 批准号:
    2247315
  • 财政年份:
    2023
  • 资助金额:
    $ 4.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了