Multi-Center Academic-Industrial Partnership for Personalized Al-Enabled High Count PET
个性化 Al 启用高计数 PET 的多中心学术-工业合作伙伴关系
基本信息
- 批准号:10682066
- 负责人:
- 金额:$ 66.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-05 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptionBilateralCaliforniaClinicClinicalClinical DataClinical InvestigatorComputer softwareDataData SetDiagnosisDiagnosticDoseEnvironmentEvaluationFeedbackGenerationsHealthcareHumanHybridsImageInjectionsInvestigationLabelLesionLiverMathematicsModelingNoiseOrganPatientsPerformancePhysiciansPositron-Emission TomographyProceduresProductionProviderResearchResearch PersonnelScanningServicesSiteStructureSystemTechniquesTestingTimeTrainingTranslatingTranslationsUniversity HospitalsValidationVendorVisualX-Ray Computed Tomographyartificial intelligence algorithmclinical decision-makingclinical imagingclinical practicedeep learningdeep learning modeldiagnostic accuracyexperienceimaging modalityimprovedindustry partnerlearning networklearning strategyreal world applicationreconstructionvirtualvirtual model
项目摘要
Abstract
High image noise degrades the diagnostic efficacy and quantitative accuracy of PET, as noise could easily
results in overestimation of SUV and cause false positive lesion detections in diagnosis. High image noise also
decreases the confidence of clinical decision making, leading to additional unnecessary follow-ups through other
imaging modalities and invasive procedure. Deep learning-based noise reduction has shown promises for PET
imaging. However, existing approaches only focus on converting low-count image (e.g. acquired through low-
dose injection or shorter scan time) to standard-count image in typical clinical scans. However, for both low-
count and the vast majority of routinely acquired clinical PET images with normal dose and scan time, there is
no approach to convert such clinical images to high-count images to further reduce the image noise, mainly due
to the challenge of obtaining high-count PET images as training labels. Another challenge in the real-world
application is to match the training data with the testing data, in terms of noise level, noise structure,
reconstruction parameters, scanner model, etc. Such matching is particularly challenging in a multi-center multi-
scanner setting. In this Academic-Industrial Partnership R01 project, we formed an ideal partnership between
Visage Imaging, a leading PACS company, and three leading academic centers (Yale, MGH, UC Davis) to
develop, evaluate, deploy, and translate robust deep learning methods to generate virtual-high-count PET
images in a highly personalized manner by taking into account the noise level of each organ in each patient, as
well as associated non-imaging patient information. The academic sites have access to a large number of high-
count data that are acquired either through long dynamic scans (at least 90 minutes) or by the ultra-sensitive
long axial field-of-view (FOV) Explorer scanner. The developed product would be deep learning networks that
can convert any clinical PET images data from all major vendors (Siemens, GE, United Imaging Healthcare
(UIH)) into virtual-high-count ultra-low noise images. Since Yale, MGH, and UC Davis are all serviced by Visage
Imaging, the developed deep learning technique can be seamlessly translated into Visage PACS
research/clinical servers for validation and evaluation, beta testing and user feedback, and ultimate translation
and regulatory filings. In Aim 1, we will develop deep learning models for virtual-high-count PET generation. In
Aim 2, we will evaluate and deploy the models into Visage research PACS server and evaluate virtual-high-count
PET in clinical environments. In Aim 3, we will integrate the developed virtual-high-count PET deep learning
models into the clinical production PACS server and generate regulatory documents and supporting data for
FDA 510(k).
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RAMSEY D. BADAWI其他文献
RAMSEY D. BADAWI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RAMSEY D. BADAWI', 18)}}的其他基金
Basic applications for total-body PET in oncology
全身 PET 在肿瘤学中的基本应用
- 批准号:
9803729 - 财政年份:2019
- 资助金额:
$ 66.97万 - 项目类别:
Basic applications for total-body PET in oncology
全身 PET 在肿瘤学中的基本应用
- 批准号:
10248438 - 财政年份:2019
- 资助金额:
$ 66.97万 - 项目类别:
Basic applications for total-body PET in oncology
全身 PET 在肿瘤学中的基本应用
- 批准号:
10017942 - 财政年份:2019
- 资助金额:
$ 66.97万 - 项目类别:
EXPLORER: Changing the Molecular Imaging Paradigm with Total Body PET
EXPLORER:用全身 PET 改变分子成像范式
- 批准号:
9334154 - 财政年份:2015
- 资助金额:
$ 66.97万 - 项目类别:
EXPLORER: Changing the Molecular Imaging Paradigm with Total Body PET
EXPLORER:用全身 PET 改变分子成像范式
- 批准号:
9788409 - 财政年份:2015
- 资助金额:
$ 66.97万 - 项目类别:
EXPLORER: Changing the Molecular Imaging Paradigm with Total Body PET
EXPLORER:用全身 PET 改变分子成像范式
- 批准号:
9150516 - 财政年份:2015
- 资助金额:
$ 66.97万 - 项目类别:
Enabling technologies for ultra-high sensitivity PET scanners (PQ13)
超高灵敏度 PET 扫描仪的支持技术 (PQ13)
- 批准号:
8520273 - 财政年份:2012
- 资助金额:
$ 66.97万 - 项目类别:
Enabling technologies for ultra-high sensitivity PET scanners (PQ13)
超高灵敏度 PET 扫描仪的支持技术 (PQ13)
- 批准号:
8384670 - 财政年份:2012
- 资助金额:
$ 66.97万 - 项目类别:
Enabling technologies for ultra-high sensitivity PET scanners (PQ13)
超高灵敏度 PET 扫描仪的支持技术 (PQ13)
- 批准号:
8702118 - 财政年份:2012
- 资助金额:
$ 66.97万 - 项目类别:
相似国自然基金
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
A Study of Policy Convergence between Multilateral and Bilateral Donors' Support for Community Participation in Education in Cambodia
柬埔寨社区参与教育的多边和双边捐助者支持政策趋同研究
- 批准号:
24K05750 - 财政年份:2024
- 资助金额:
$ 66.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bilateral ESRC/FNR: Training Executives to Enhance Employee Engagement in Government: Field Experimental Evidence from Luxembourg
双边 ESRC/FNR:培训高管以提高员工在政府中的参与度:来自卢森堡的现场实验证据
- 批准号:
ES/W010380/1 - 财政年份:2023
- 资助金额:
$ 66.97万 - 项目类别:
Research Grant
Optimizing bilateral and single-sided-deafness cochlear implants for functioning in complex auditory environments
优化双侧和单侧耳聋人工耳蜗植入物以在复杂的听觉环境中发挥作用
- 批准号:
10654316 - 财政年份:2023
- 资助金额:
$ 66.97万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 66.97万 - 项目类别:
Investigating subthreshold vestibular stimulation as a strategy for rehabilitation in individuals with bilateral vestibular hypofunction
研究阈下前庭刺激作为双侧前庭功能减退患者的康复策略
- 批准号:
10571440 - 财政年份:2023
- 资助金额:
$ 66.97万 - 项目类别:
Conference: NSF/UKRI Bilateral Workshop on Quantum Information Science in Chemistry
会议:NSF/UKRI 化学中量子信息科学双边研讨会
- 批准号:
2403812 - 财政年份:2023
- 资助金额:
$ 66.97万 - 项目类别:
Standard Grant
Factors for bilateral capital inflows into emerging market economies from advanced economies
发达经济体双边资本流入新兴市场经济体的因素
- 批准号:
23K01461 - 财政年份:2023
- 资助金额:
$ 66.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shift from Unilateral to Bilateral Sensory-Motor Connectivity in Chronic Hemiparetic Stroke
慢性偏瘫中风从单侧感觉运动连接转向双侧感觉运动连接
- 批准号:
10991213 - 财政年份:2023
- 资助金额:
$ 66.97万 - 项目类别:
Bilateral wheat improvement workshop with BalticWheat network
与波罗的海小麦网络双边小麦改良研讨会
- 批准号:
BB/T018291/1 - 财政年份:2023
- 资助金额:
$ 66.97万 - 项目类别:
Research Grant
Bilateral ESRC/FNR: Banking on Europe
双边 ESRC/FNR:欧洲银行业
- 批准号:
ES/W000733/2 - 财政年份:2023
- 资助金额:
$ 66.97万 - 项目类别:
Research Grant














{{item.name}}会员




