Structural and Functional Studies on Proton-activated Chloride (PAC) Channel
质子激活氯离子 (PAC) 通道的结构和功能研究
基本信息
- 批准号:10681494
- 负责人:
- 金额:$ 10.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcidosisAcidsAdoptedAnionsAntibodiesAntibody FormationArchitectureAwardBenzoic AcidsBindingBinding SitesBiochemicalBrainBrain InjuriesCell Death InductionCell LineCellsCerebrumCessation of lifeChloride ChannelsChloridesComputing MethodologiesCryoelectron MicroscopyDevelopmentDiseaseElectrophysiology (science)Extracellular DomainFoundationsFutureGenesGoalsHumanImmunizeInjuryInterventionInvestigationIonsIschemic StrokeKnowledgeLinkLipidsMediatingMembrane ProteinsMentorsMetabolicMolecularMolecular ConformationMonoclonal AntibodiesMouse ProteinMusMutationNeuronsNiflumic AcidOrthologous GeneOutcomePathologicPathologic ProcessesPathway interactionsPatientsPharmacologic SubstancePhasePhysiologicalPlayPost-Translational Protein ProcessingPostdoctoral FellowProbabilityProceduresPropertyProteinsProtonsRNA SplicingRecombinantsResearchResearch PersonnelRestRoleServicesSeveritiesSolidStructureSupervisionSwellingSystemTechniquesTherapeuticTimeTissuesTitrationsToxic effectTrainingUnited StatesVariantWorkchannel blockersdesigndisabilityeffective therapyexperimental studyextracellularimprovedinhibitorinsightmutantnanodiskneurotoxicitynovelparticlepatch clamppharmacologicpregnenolone sulfateprotein purificationprotein structureresponsescreeningsensorsmall moleculestoichiometrytreatment strategyvoltage
项目摘要
ABSTRACT
Ischemic stroke is one of the leading causes of disability and death in the United States. Acid accumulation in
the brain during ischemic stroke causes neurotoxicity and irreversible tissue damage. Understanding the
factors that contribute to acid-induced cell death during ischemic stroke is thus critical to define the
pathological process and develop effective treatment strategies. The proton-activated chloride (PAC) channel
(also known as ASOR or PAORAC) is a recently discovered cellular pH-sensor that plays a critical role in
determining the outcome of brain damage after ischemic stroke. Under acidic conditions, the activation of PAC
allows an influx of chloride current into the neuron which further causes cell swelling and death. In 2019, the
PAC gene was cloned by two independent groups and was found to be a novel chloride channel. In 2020, I
revealed the first near-atomic cryo-EM structures of the human PAC channel at two different conformational
states, including an apo state and a proton-bound non-conducting state. Our study provided a wealth of
information about channel stoichiometry, domain architecture, and anion selectivity mechanisms of PAC. While
promising progress has been made towards understanding the function of this channel, a complete picture of
how PAC responds to environmental acidification is still obscure due to the limited knowledge about the pH-
sensor and the lack of an open state structure. Likewise, although the PAC current is sensitive to several non-
specific chloride channel blockers, their inhibition mechanisms are unexplored. The long-term objective of this
research is to unveil the molecular principles underlying PAC channel function in both physiological and
pathological conditions, and to develop specific compounds that could be used to mitigate the effect of
ischemic stroke in patients. In this K99/R00 proposal, will carry out a comprehensive structural and functional
investigation of PAC by revealing its pH-sensing residues and the associated structural mechanisms (Aim 1). I
will also explore strategies to obtain an open state structure of PAC and provide detailed mechanistic
knowledge about its voltage-dependent gating mechanisms (Aim 2). I will also study the PAC channel in its
native state by purifying endogenous PAC protein from mouse brain (Aim 3). Lastly, I will investigate small
molecule-mediated inhibition mechanisms through combined structural and functional approaches (Aim 4).
The mentored phase of the award will be conducted at Van Andel Institute under the supervision of Dr. Juan
Du. During this time, I will receive additional training in membrane protein structure determination, patch-clamp
electrophysiology experiments, and endogenous protein purification techniques. These components are not
only essential for the completion of the research but will also prepare me to become an independent
investigator in the near future.
摘要
缺血性中风是美国残疾和死亡的主要原因之一。酸积累
缺血性中风期间的脑引起神经毒性和不可逆的组织损伤。了解
因此,在缺血性卒中期间,有助于酸诱导细胞死亡的因素对于确定
病理过程,并制定有效的治疗策略。质子激活氯离子通道(PAC)
(also称为ASOR或PAORAC)是最近发现的细胞pH传感器,
确定缺血性中风后脑损伤的结果。在酸性条件下,
允许氯电流流入神经元,这进一步导致细胞肿胀和死亡。2019年
PAC基因是由两个独立的小组克隆的,并被发现是一个新的氯离子通道。2020年我
揭示了人类PAC通道在两种不同构象下的第一个近原子冷冻-EM结构,
状态,包括APO状态和质子束缚的非导电状态。我们的研究提供了丰富的
信息渠道化学计量,域架构,阴离子选择性机制的PAC。而
在了解这一通道的功能方面已经取得了可喜的进展,
PAC如何响应环境酸化仍然是模糊的,由于有关pH值的知识有限,
传感器和缺乏开放状态结构。同样,虽然PAC电流对几个非-
特异性氯离子通道阻断剂,其抑制机制尚未探索。长期目标是
这项研究的目的是揭示PAC通道在生理和生理上功能的分子原理,
病理条件,并开发特定的化合物,可用于减轻的影响,
缺血性中风患者。在这个K99/R 00的建议,将进行全面的结构和功能
通过揭示PAC的pH敏感残基和相关的结构机制来研究PAC(目的1)。我
我还将探讨获得PAC开放状态结构的策略,并提供详细的机制,
了解其电压依赖性门控机制(目标2)。我还将研究PAC通道,
通过从小鼠脑中纯化内源性PAC蛋白质来获得天然状态(Aim 3)。最后,我将研究小
分子介导的抑制机制,通过结合结构和功能的方法(目的4)。
该奖项的指导阶段将在Juan博士的监督下在货车Andel研究所进行
杜在此期间,我将接受膜蛋白结构测定、膜片钳
电生理学实验和内源性蛋白质纯化技术。这些组件没有
这对完成研究至关重要,但也将使我成为一个独立的人。
在不久的将来调查。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zheng Ruan其他文献
Zheng Ruan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zheng Ruan', 18)}}的其他基金
Structural and Functional Studies on Proton-activated Chloride (PAC) Channel
质子激活氯离子 (PAC) 通道的结构和功能研究
- 批准号:
10507346 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
相似国自然基金
具有抗癌活性的天然产物金霉酸(Aureolic acids)全合成与选择性构建2-脱氧糖苷键
- 批准号:22007039
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
海洋放线菌来源聚酮类化合物Pteridic acids生物合成机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
手性Lewis Acids催化的分子内串联1,5-氢迁移/环合反应及其在构建结构多样性手性含氮杂环化合物中的应用
- 批准号:21372217
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
对空气稳定的新型的有机金属Lewis Acids催化剂制备、表征与应用研究
- 批准号:21172061
- 批准年份:2011
- 资助金额:30.0 万元
- 项目类别:面上项目
钛及含钛Lewis acids促臭氧/过氧化氢体系氧化性能的广普性、高效性及其机制
- 批准号:21176225
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Zip Nucleic Acids引物对高度降解和低拷贝DNA检材的STR分型研究
- 批准号:81072511
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
海洋天然产物Makaluvic acids 的全合成及其对南海鱼虱存活的影响
- 批准号:30660215
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
- 批准号:
502577 - 财政年份:2024
- 资助金额:
$ 10.93万 - 项目类别:
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
- 批准号:
2338857 - 财政年份:2024
- 资助金额:
$ 10.93万 - 项目类别:
Continuing Grant
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 10.93万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synthetic analogues based on metabolites of omega-3 fatty acids protect mitochondria in aging hearts
基于 omega-3 脂肪酸代谢物的合成类似物可保护衰老心脏中的线粒体
- 批准号:
477891 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Operating Grants
Metabolomic profiles of responders and non-responders to an omega-3 fatty acids supplementation.
对 omega-3 脂肪酸补充剂有反应和无反应者的代谢组学特征。
- 批准号:
495594 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrated understanding and manipulation of hypoxic cellular functions by artificial nucleic acids with hypoxia-accumulating properties
具有缺氧累积特性的人工核酸对缺氧细胞功能的综合理解和操纵
- 批准号:
23H02086 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)