Data Repository and Management Core
数据存储和管理核心
基本信息
- 批准号:10684793
- 负责人:
- 金额:$ 91.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressBig DataChild HealthCollaborationsCollectionCommunitiesComputer softwareDataData AggregationData AnalysesData AnalyticsData ScienceData SetDepositionDescriptorDocumentationEconomic ModelsEligibility DeterminationEnsureEnvironmental ExposureEnvironmental HealthFAIR principlesFutureGeneral PopulationGenerationsGuidelinesHealthHealth Insurance Portability and Accountability ActHumanIndividualInfrastructureIngestionIntuitionLaboratoriesLifeLife Cycle StagesMapsMetadataModernizationPoliciesProceduresProcessProductivityReportingReproducibilityResearchResearch PersonnelResourcesRetrievalRoleSample SizeScientific Advances and AccomplishmentsSecureSecuritySelf DirectionSemanticsServicesTrainingUnited States National Institutes of HealthVisualization softwareVocabularyWorkanalytical methodanalytical tooldata accessdata centersdata harmonizationdata integritydata managementdata portaldata repositorydata resourcedata reusedata sharingdata standardsdata submissiondata visualizationdesignexperiencefederated dataflexibilitygenome wide association studyimplementation processinteroperabilitylarge datasetsmetabolomicsmultimodal dataprogramsquality assurancequery toolssocial mediastudy populationtoolusabilityuser-friendlywebinar
项目摘要
DATA REPOSITORY AND MANAGEMENT CORE PROJECT SUMMARY
The Data Repository and Management Core (DRMC) will advance scientific understanding of environmental
exposures by expanding our successful CHEAR Data Center (DC) data portal and repository to encompass
humans at all life stages. Our proposed HHEAR DC data portal and repository, along with our effective user
support team, will help researchers add comprehensive exposure analysis to their studies. Our demonstrated
commitment to FAIR principles and our unique harmonized data sets will enhance research productivity and
general public understanding by (1) providing access to cleaned and harmonized data and larger data sets for
greater statistical power and maximal reuse; (2) interoperating with relevant national data sets such as the
Metabolomics Workbench, ECHO, and others to facilitate data submission of new data types; and (3)
facilitating access to modern collaborative data analysis tools such as Jupyter notebooks and Google's
Colaboratory. We will employ best practices for high reliability and security and follow HIPAA guidelines. To
develop effective and focused infrastructure, services, and processes tailored for the CHEAR community, our
interdisciplinary team developed strong partnerships with the Coordinating Center (CC), the Lab Network, the
ECHO DC, the Metabolomics Workbench, and others. These relationships, along with our existing CHEAR
infrastructure, singular expertise, and established processes, will carry over to the creation of the HHEAR DC
and will help accelerate its rollout. These services will give the HHEAR community the ability to discover new
correlations and relationships between multi-scale and multimodal data sets, thus progressing toward the
promise of big data to help solve the major challenges of human environmental health research across the
lifecourse. Combining data from a set of individual studies would likely require substantial work if it were
attempted without resources similar to those of the HHEAR DMRC; the design of the data repository will
facilitate manageable and efficient combining of existing data sets; the availability of common vocabularies
developed by the DSR will contribute to maximizing the usable data from each study; and the SSAR will
ultimately receive a dataset to which they can apply their exposome-related analytic methods to address
hypotheses on the environmental health of the pooled study population. Our state-of-the-art DRMC has been
fulfilling these roles within the CHEAR program, and will build on and extend our capabilities as the HHEAR
DC. In sum, leveraging our existing infrastructure and expertise will overcome the need for a long
implementation process fraught with challenges — we have already encountered and overcome many such
challenges in implementing the CHEAR DC, and will be able to flexibly respond to the needs of HHEAR
Network.
数据储存和管理核心项目摘要
数据存储库和管理核心(DRMC)将促进对环境的科学理解。
通过扩展我们成功的CHEMICAL数据中心(DC)数据门户和存储库,
人类在各个生命阶段。我们建议的HHEAR DC数据门户和存储库,以及我们的有效用户沿着
支持团队将帮助研究人员在他们的研究中增加全面的暴露分析。我们的示范
对公平原则的承诺和我们独特的协调数据集将提高研究生产力,
(1)提供获得经过清理和统一的数据以及更大的数据集的途径,
更大的统计能力和最大限度的重用;(2)与相关国家数据集(例如
代谢组学研究中心、ECHO和其他机构,以促进新数据类型的数据提交;以及(3)
方便使用现代协作数据分析工具,如Google的
合作实验室。我们将采用最佳实践来实现高可靠性和安全性,并遵循HIPAA准则。到
开发有效的和有针对性的基础设施,服务和流程为CHEMICAL社区量身定制,我们的
跨学科团队与协调中心(CC),实验室网络,
ECHO DC,代谢组学,和其他。这些关系,沿着我们现有的CHEMICAL
基础设施、独特的专业知识和既定的流程将延续到HHEAR DC的创建
并将有助于加速其推广。这些服务将使HHEAR社区能够发现新的
多尺度和多模态数据集之间的相关性和关系,从而朝着
大数据的承诺,以帮助解决整个人类环境健康研究的主要挑战
生命历程如果是这样的话,将一组单独研究的数据结合起来可能需要大量的工作。
在没有类似于HHEAR DMRC的资源的情况下尝试;数据存储库的设计将
便于管理和有效地合并现有数据集;提供共同词汇
由DSR开发的将有助于最大限度地利用每项研究的可用数据; SSAR将
最终收到一个数据集,他们可以应用他们的麻烦相关的分析方法来解决
关于合并研究人群环境健康的假设。我们最先进的DRMC
在CHEARS计划中履行这些角色,并将建立和扩展我们作为HHEAR的能力
DC.总之,利用我们现有的基础设施和专业知识,
执行过程充满挑战-我们已经遇到并克服了许多这样的挑战,
在实施CHELDC的挑战,并将能够灵活地响应HHEAR的需求
网络
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patricia Kovatch其他文献
Patricia Kovatch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patricia Kovatch', 18)}}的其他基金
COVID and Translational Science supercomputer (CATS)
新冠肺炎和转化科学超级计算机 (CATS)
- 批准号:
10177277 - 财政年份:2021
- 资助金额:
$ 91.47万 - 项目类别:
Transforming Genomics with 5 PB Big Omics Data Engine Cray CS300-AC Supercomputer
使用 5 PB 大组学数据引擎 Cray CS300-AC 超级计算机转变基因组学
- 批准号:
8734830 - 财政年份:2014
- 资助金额:
$ 91.47万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 91.47万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 91.47万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 91.47万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 91.47万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 91.47万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 91.47万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 91.47万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 91.47万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 91.47万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 91.47万 - 项目类别:
Research Grant