Data Repository and Management Core
数据存储和管理核心
基本信息
- 批准号:10006827
- 负责人:
- 金额:$ 108.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AddressBig DataChild HealthCollectionCommunitiesComputer softwareDataData AggregationData AnalysesData AnalyticsData ScienceData SetDepositionDescriptorDocumentationEconomic ModelsEligibility DeterminationEnsureEnvironmental ExposureEnvironmental HealthFAIR principlesFutureGeneral PopulationGenerationsGuidelinesHealthHealth Insurance Portability and Accountability ActHumanIndividualInfrastructureIngestionIntuitionLaboratoriesLifeMetadataModernizationPoliciesProceduresProcessProductivityReportingReproducibilityResearchResearch PersonnelResourcesRetrievalRoleSample SizeScientific Advances and AccomplishmentsSecureSecuritySelf-DirectionSemanticsServicesSumTimeTrainingUnited States National Institutes of HealthVisualization softwareVocabularyWorkanalytical methodanalytical tooldata accessdata centersdata harmonizationdata integritydata managementdata portaldata resourcedata reusedata sharingdata standardsdata submissiondata visualizationdata warehousedesignexperienceflexibilitygenome wide association studyinteroperabilitylarge datasetsmetabolomicsmultimodal dataprogramsquality assurancequery toolssocial mediastudy populationtooluser-friendlywebinar
项目摘要
DATA REPOSITORY AND MANAGEMENT CORE PROJECT SUMMARY
The Data Repository and Management Core (DRMC) will advance scientific understanding of environmental
exposures by expanding our successful CHEAR Data Center (DC) data portal and repository to encompass
humans at all life stages. Our proposed HHEAR DC data portal and repository, along with our effective user
support team, will help researchers add comprehensive exposure analysis to their studies. Our demonstrated
commitment to FAIR principles and our unique harmonized data sets will enhance research productivity and
general public understanding by (1) providing access to cleaned and harmonized data and larger data sets for
greater statistical power and maximal reuse; (2) interoperating with relevant national data sets such as the
Metabolomics Workbench, ECHO, and others to facilitate data submission of new data types; and (3)
facilitating access to modern collaborative data analysis tools such as Jupyter notebooks and Google's
Colaboratory. We will employ best practices for high reliability and security and follow HIPAA guidelines. To
develop effective and focused infrastructure, services, and processes tailored for the CHEAR community, our
interdisciplinary team developed strong partnerships with the Coordinating Center (CC), the Lab Network, the
ECHO DC, the Metabolomics Workbench, and others. These relationships, along with our existing CHEAR
infrastructure, singular expertise, and established processes, will carry over to the creation of the HHEAR DC
and will help accelerate its rollout. These services will give the HHEAR community the ability to discover new
correlations and relationships between multi-scale and multimodal data sets, thus progressing toward the
promise of big data to help solve the major challenges of human environmental health research across the
lifecourse. Combining data from a set of individual studies would likely require substantial work if it were
attempted without resources similar to those of the HHEAR DMRC; the design of the data repository will
facilitate manageable and efficient combining of existing data sets; the availability of common vocabularies
developed by the DSR will contribute to maximizing the usable data from each study; and the SSAR will
ultimately receive a dataset to which they can apply their exposome-related analytic methods to address
hypotheses on the environmental health of the pooled study population. Our state-of-the-art DRMC has been
fulfilling these roles within the CHEAR program, and will build on and extend our capabilities as the HHEAR
DC. In sum, leveraging our existing infrastructure and expertise will overcome the need for a long
implementation process fraught with challenges — we have already encountered and overcome many such
challenges in implementing the CHEAR DC, and will be able to flexibly respond to the needs of HHEAR
Network.
数据存储和管理核心项目汇总
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patricia Kovatch其他文献
Patricia Kovatch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patricia Kovatch', 18)}}的其他基金
COVID and Translational Science supercomputer (CATS)
新冠肺炎和转化科学超级计算机 (CATS)
- 批准号:
10177277 - 财政年份:2021
- 资助金额:
$ 108.66万 - 项目类别:
Transforming Genomics with 5 PB Big Omics Data Engine Cray CS300-AC Supercomputer
使用 5 PB 大组学数据引擎 Cray CS300-AC 超级计算机转变基因组学
- 批准号:
8734830 - 财政年份:2014
- 资助金额:
$ 108.66万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 108.66万 - 项目类别:
Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 108.66万 - 项目类别:
Research Grant
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
$ 108.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
- 批准号:
2346286 - 财政年份:2024
- 资助金额:
$ 108.66万 - 项目类别:
Standard Grant
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
- 批准号:
DP240100300 - 财政年份:2024
- 资助金额:
$ 108.66万 - 项目类别:
Discovery Projects
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 108.66万 - 项目类别:
Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
- 批准号:
24K05127 - 财政年份:2024
- 资助金额:
$ 108.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
- 批准号:
DP240101848 - 财政年份:2024
- 资助金额:
$ 108.66万 - 项目类别:
Discovery Projects
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
- 批准号:
10069843 - 财政年份:2023
- 资助金额:
$ 108.66万 - 项目类别:
EU-Funded
Improving NHS perimenopausal diagnosis and HRT prescription through AI, machine learning and big data
通过人工智能、机器学习和大数据改善 NHS 围绝经期诊断和 HRT 处方
- 批准号:
10053966 - 财政年份:2023
- 资助金额:
$ 108.66万 - 项目类别:
Collaborative R&D