Data Analysis Core
数据分析核心
基本信息
- 批准号:10689782
- 负责人:
- 金额:$ 78.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AgeArchitectureBioinformaticsBiologicalBiological AssayBiological MarkersCadaverCatalogsCell AgingCellsCellular AssayCommon Data ElementComputational BiologyComputer softwareConfounding Factors (Epidemiology)DataData AnalysesData ProvenanceData ScienceData SetDevelopmentDocumentationElementsEmerging TechnologiesEnsureEvaluationFAIR principlesFoundationsGenerationsGuidelinesHeartHeterogeneityHigh-Throughput Nucleotide SequencingHumanImageImage AnalysisImmunohistochemistryImmunologyIndividualLeadLeadershipMapsMetadataMethodsModelingModernizationMuscleNormal tissue morphologyOntologyOrganoidsPoliciesPopulationProceduresProcessRaceReproducibilityResolutionSkinSpecific qualifier valueSpecimenStructure of parenchyma of lungSystemTimeTissuesUnited States National Institutes of HealthUpdateValidationVisualizationbiomarker signaturecell typecomparativecomputerized data processingdashboarddata integrationdata sharingdata standardsdeep learningdigital pathologyepigenomeexperienceflexibilityhigh dimensionalityhigh throughput screeningin situ sequencinginnovationinterestinteroperabilitymathematical modelmeetingsmembermethod developmentmultidimensional datamultiple omicspublic repositoryrepositorysenescencesexsimulationsingle cell analysissingle-cell RNA sequencingstatisticstissue mappingtooltranscriptometranscriptomics
项目摘要
Data Analyses Core: Abstract
The Data Analysis Core (DAC) will provide the expertise to manage, model, and analyze data generated by the
Duke Tissue Mapping Center (TMC), so as to deliver senescent cell signatures and tissue maps of senescent
cells to the CODCC. This will be achieved by pragmatic and innovative execution of the mandated aims – Data
Processing, Data Analysis, Map Construction and Consortium Coordination. The Data Processing team will be
responsible for the implementation of a cloud native platform on Microsoft Azure that will process data
according to FAIR (Findable, Accessible, Interoperable and Reusable) guidelines. The team will coordinate
with the Biospecimen Core to document potential confounding variables such as race, sex, live or cadaveric
tissue origin; with the Biological Analysis Core for their expertise in optimal pipelines for processing specific
assay data, and with the Data Analysis team to ensure the data is collected in a format that is interoperable
with downstream analysis. The Data Analysis team will be responsible for the characterization of senescent
cell signatures that takes into account the heterogeneity of senescent cells and the dynamics of transitioning to
the senescent state. The team will use an iterative strategy to identify senescent cells, identify and expand
associated markers, and characterize the functional signature conditional on the biological context of the
senescent cell. The team will make use of organoids for initial characterization of the dynamic signature, using
these putative signatures to identify rare senescent cells in normal tissue (including biofluids), and refine the
putative signature by re-weighting signature elements based on the extent to which they occur in senescent
cells in normal tissue. The Map Construction team will be responsible for the development of spatial maps of
senescent cells in normal tissue using advanced computational biology methods, innovative tensor analysis
approaches and modern deep learning architectures. The team will integrate data from spatial assays
(multiplexed immunohistochemistry images, Visium spatial transcriptomics, and Cartana in-situ sequencing)
and single cell assays (combined scRNA-seq and scATAC-seq) to build spatial maps predictive of the
transcriptome, epigenome and secretome of senescent cells in normal tissue from lung, heart, muscle and
skin. The team will also develop a dashboard tool that interfaces with Azure for map visualization, and evaluate
the accuracy of these maps using cross-validation, data sets from public repositories, and maps constructed by
other TMCs. The Consortium Coordination team will be responsible for annotation of all data sets using terms
from NIH Common Data Elements Repository and OBO Foundry ontologies, creation of policies for data and
metadata capture, definition of practices for reproducible analysis including use of containers and workflow
orchestration scripts, and conversion of data, models, pipelines and tissue maps to interoperable formats for
uploading to the CODCC. The team will also lead the collaborative development, with other interested parties
from the SenNet consortium, of a Senescent Cell Ontology.
数据分析核心:摘要
数据分析核心(DAC)将为管理,建模和分析由
杜克组织映射中心(TMC),以提供感官的细胞特征和感官的组织图
细胞到CODCC。这将通过务实和创新的执行授权目标来实现 - 数据
处理,数据分析,地图构建和财团协调。数据处理团队将是
负责在Microsoft Azure上实现云本机平台,该平台将处理数据
根据公平(可访问,可访问,可互操作和可重复使用的)指南。团队将协调
使用生物循环核心来记录潜在的混杂变量,例如种族,性别,现场或尸体
组织起源;具有生物分析核心的核心
测定数据,并与数据分析团队确保以可互操作的格式收集数据
通过下游分析。数据分析团队将负责Senscent的表征
考虑到感官细胞的异质性以及过渡到的动力学的细胞签名
感觉状态。团队将使用迭代策略来识别感觉细胞,识别和扩展
相关标记,并在生物环境中表征有条件的功能签名
感觉细胞。该团队将利用类器官进行动态签名的初始表征
这些假定的特征是鉴定正常组织中稀有的感觉细胞(包括生物流体),并完善
根据Senscent中发生的程度,通过重新加权签名元素来定义签名
正常组织中的细胞。地图建筑团队将负责开发的空间地图
使用先进的计算生物学方法,正常组织中的感觉细胞,创新的张量分析
方法和现代深度学习体系结构。团队将从空间测定中整合数据
(多路复用免疫组织化学图像,空间转录组学和Cartana原位测序)
以及单细胞测定(合并的scrna-seq和scatac-seq),以构建空间图的预测
肺,心脏,肌肉和
皮肤。该团队还将开发一个仪表板工具,该工具与Azure接口以进行地图可视化,并评估
这些地图使用交叉验证,公共存储库的数据集以及由
其他TMC。财团协调团队将负责使用条款的所有数据集注释
从NIH通用数据元素存储库和OBO铸造本体论,创建数据和
元数据捕获,可再现分析实践的定义,包括使用容器和工作流程
编排脚本以及数据,模型,管道和组织地图的转换为可互操作的格式
上传到CODCC。该团队还将与其他有趣的政党领导协作发展
来自Sennet财团,衰老细胞本体论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cliburn C Chan其他文献
Cliburn C Chan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cliburn C Chan', 18)}}的其他基金
Training Program in Bioinformatics at the Intersection of Cancer Immunology and Microbiome
癌症免疫学和微生物组交叉点的生物信息学培训计划
- 批准号:
10653865 - 财政年份:2020
- 资助金额:
$ 78.13万 - 项目类别:
Training Program in Bioinformatics at the Intersection of Cancer Immunology and Microbiome
癌症免疫学和微生物组交叉点的生物信息学培训计划
- 批准号:
10457252 - 财政年份:2020
- 资助金额:
$ 78.13万 - 项目类别:
Training Program in Bioinformatics at the Intersection of Cancer Immunology and Microbiome
癌症免疫学和微生物组交叉点的生物信息学培训计划
- 批准号:
10171567 - 财政年份:2020
- 资助金额:
$ 78.13万 - 项目类别:
Core 4: Statistics and Mathematical Modeling Core
核心4:统计和数学建模核心
- 批准号:
10215783 - 财政年份:2019
- 资助金额:
$ 78.13万 - 项目类别:
Core 4: Statistics and Mathematical Modeling Core
核心4:统计和数学建模核心
- 批准号:
10374247 - 财政年份:2019
- 资助金额:
$ 78.13万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
- 批准号:
10722368 - 财政年份:2023
- 资助金额:
$ 78.13万 - 项目类别:
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
- 批准号:
10658215 - 财政年份:2023
- 资助金额:
$ 78.13万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 78.13万 - 项目类别:
Genetic Studies of Alzheimer's Disease in Jewish and Arab Populations
犹太人和阿拉伯人群阿尔茨海默病的遗传学研究
- 批准号:
10639024 - 财政年份:2023
- 资助金额:
$ 78.13万 - 项目类别:
4D controllable extracellular matrix properties to guide iPSC-derived intestinal organoid fate and form
4D 可控细胞外基质特性指导 iPSC 衍生的肠道类器官的命运和形成
- 批准号:
10644759 - 财政年份:2023
- 资助金额:
$ 78.13万 - 项目类别: