Towards Better Understanding of ALS using a Multi-Marker Discovery Approach from a Multi-Modal Database (ALS4M)

使用多模态数据库的多标记发现方法更好地理解 ALS (ALS4M)

基本信息

  • 批准号:
    10610610
  • 负责人:
  • 金额:
    $ 29.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-30 至 2025-09-29
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT The overarching goal of this study is to use new large multi-modal data resources and machine-learning-based data mining algorithm to better understand risk factors and improve diagnosis for people with Amyotrophic lateral sclerosis (ALS). Amyotrophic lateral sclerosis (ALS) is a rare, fatal neurodegenerative disorder, with 90% sporadic cases do not have genetic causes and their contributing risk factors are largely unknown. Most of what is known about ALS risk factors comes from epidemiological studies using registry data, which historically forms the main standardized big data source to help describe the natural history, epidemiology, and burden of disease; however, the strength of evidence resulting from these studies varies greatly. One potential major limitation to registry data are the fields collected are based upon known potential risk factors, which have restricted its usability for exploring novel associations and causalities. Moreover, ALS is a rare disease with low prevalence, thus making it infeasible to study its etiology using traditional observational study design due to statistical power constraints. The digitization of healthcare records and the capacity to link to other relevant data sources now enables a more representative, enriched and statistically powerful study population; and ideal for leveraging machine-learning-driven, hypothesis-generating models to identify new risk factors and patterns identify new risk factors important for understanding, diagnosing, or treating people with ALS. Building on established well-integrated real world big data source and established ensemble embedded feature selection framework, an established multi-marker (biomarker, clinical marker, geo-marker, socio-marker) discovery algorithm will be developed to discover novel, generalizable risk factors (Aim 1); new symptomatic patterns for early diagnosis (Aim 2), and effective clinical care pathways for ALS (Aim 3). To best translate findings into clinical insights, a multi-disciplinary and multi-stakeholder team has been assembled, including not only investigators with diverse expertise in statistics, machine learning, clinical research informatics, neurology, computer science, epidemiology, but also an engaging patient advisory board with diverse social background. The proposed work will be one of the first pilot studies applying AI/ML-based, hypothesis-generating algorithms on statistically powerful real-world data to bridge the knowledge gap on ALS risk factors. The work will not only provide CDC agency of toxic substance and disease registry (ATSDR) with empirical evidence to better prioritize future decisions on expanding the ALS registry risk factor survey but serve to inform better designed proposals for future etiological studies and targeted trials for ALS. This study will also provide an exemplar framework which can be generalizable to advance research of other rare and complex disease domains by leveraging real world evidence.
项目摘要/摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xing Song其他文献

Xing Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xing Song', 18)}}的其他基金

Towards Better Understanding of ALS using a Multi-Marker Discovery Approach from a Multi-Modal Database (ALS4M)
使用多模态数据库的多标记发现方法更好地理解 ALS (ALS4M)
  • 批准号:
    10704220
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:

相似海外基金

Designing synthetic matrices for enhanced organoid development: A step towards better disease understanding
设计合成基质以增强类器官发育:更好地了解疾病的一步
  • 批准号:
    MR/Y033760/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Research Grant
Towards a better understanding of cardio and cerebrovascular diseases
加深对心脑血管疾病的认识
  • 批准号:
    2872635
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Studentship
Towards a better understanding of FC-CVD carbon nanotube synthesis
更好地理解 FC-CVD 碳纳米管合成
  • 批准号:
    2891622
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Studentship
Towards a better understanding of polar climate variability
更好地了解极地气候变化
  • 批准号:
    RGPIN-2021-03888
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Discovery Grants Program - Individual
Towards a better understanding of the effect of the pentafluorosulfanyl group on the lipophilicity and acid/base properties of alcohols and amines
更好地了解五氟硫基对醇和胺的亲脂性和酸/碱性质的影响
  • 批准号:
    571856-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Alliance Grants
Towards Better Understanding of ALS using a Multi-Marker Discovery Approach from a Multi-Modal Database (ALS4M)
使用多模态数据库的多标记发现方法更好地理解 ALS (ALS4M)
  • 批准号:
    10704220
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
Collaborative Research: Towards Better Understanding of the Climate System Using a Global Storm-Resolving Model
合作研究:利用全球风暴解决模型更好地了解气候系统
  • 批准号:
    2218829
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards Better Understanding of the Climate System Using a Global Storm-Resolving Model
合作研究:利用全球风暴解决模型更好地了解气候系统
  • 批准号:
    2218827
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
A better understanding of the association between problem gambling and psychotic disorders in young adults: a new path towards recovery?
更好地了解青少年问题赌博与精神障碍之间的关联:康复的新途径?
  • 批准号:
    473958
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Fellowship Programs
Towards a better understanding of the determinants and satisfaction of travel among different groups in major Canadian Cities.
更好地了解加拿大主要城市不同群体旅行的决定因素和满意度。
  • 批准号:
    RGPIN-2018-04501
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了