Data Analysis Core
数据分析核心
基本信息
- 批准号:10704487
- 负责人:
- 金额:$ 46.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAgeAlgorithmsAtlasesAuthorization documentationAutomationBehaviorBiological AssayCalibrationClassificationComputer softwareConfidence IntervalsCuesDataData AnalysesData SetDevelopmentDimensionsDiseaseEyeFundingGleanGoalsHigh Performance ComputingHistopathologyHumanImageIonsLinkMapsMathematicsMeasurementMeasuresMedical ImagingMethodsMicroscopyMiningModalityModelingMolecularMultilingualismMultimodal ImagingNormal tissue morphologyNormalcyOptical Coherence TomographyOrganOutputPancreasPatientsPhasePlayReportingResolutionSamplingScanningSourceSpecific qualifier valueSystemTechnologyTissue imagingTissuesTrainingTranslatingVariantVendorWorkanalysis pipelineauthoritycell typecomputerized data processingdata analysis pipelinedata exchangedata miningdata qualitydata reductiondata visualizationdeep learningfile formatimaging facilitiesimaging modalityin vivoin vivo imaginginclusion criteriamicroscopic imagingmultimodal datamultimodalitynovel strategiesopen sourceparallelizationreconstructionscaffoldspatial integrationtemporal measurementtissue mappingwhole slide imaging
项目摘要
PROJECT SUMMARY – Data Analysis Core. The VU-BIOMIC data analysis core (DAC) is tasked with
automation of the reconstruction and subsequent analysis of the acquired multimodal eye and pancreas tissue
imaging data. This is translated into four specific aims: (i) modality-specific data processing; (ii) data analysis
pipeline development for 2-D and 3-D molecular tissue mapping; (iii) map construction for establishing 3-D
molecular organization and function; and (iv) consortium coordination. In Aim 1, we will develop methods for
preparing acquired measurement data for subsequent spatial integration, analysis, and content mining, and to
remove any non-biological variation from the measurements prior to integration. In Aim 2, the DAC provides
rapid cues for data quality assessment and ongoing multimodal analysis as new data is integrated into the
atlases. Pre-analytically, we will develop data-derived sample inclusion criteria based on LC-MS/MS
measurements, combined with gold standard histopathology, to capture what is “normal” tissue. To enable data
mining of the massive 3-D multimodal spatially resolved datasets, accurate registration of multiple 2-D datasets
into 3-D volumes will be essential. We will build a high-resolution mono-modal 3-D scaffold, using pre-
measurement autofluorescence microscopy taken from every single tissue section. Furthermore, the 3-D data
and analysis outputs, reconstructed from serial sections, will be spatially linked (by means of 3-D-to-3-D
registration models) to the organ-specific in vivo and ex vivo 3-D scans to relate the acquired spectral data to
more commonly encountered medical imaging modalities. Data-driven image fusion will enable the empirical
discovery of potential correlative, anti-correlative, multivariate linear, and nonlinear relationships between
observations in the different modalities, and also provide a framework for estimating to higher spatial resolutions
as well as for out-of-sample prediction from one modality to another. The DAC will perform temporally resolved
analysis of the data to find how molecular content changes with patient age. In Aim 3, the map construction
phase, we will bring the third dimension to the varied data types that are measured and annotated. Data-driven
image fusion will be used to advance the 3-D maps beyond what can be gleaned from one technology alone,
including the application of IMS-AF-fusion-driven out-of-sample prediction. This will enable prediction of IMS
observations at cutting depths where no IMS is measured. This will effectively provide predictive up-sampling of
the 3-D tissue maps along the z-axis, building finer resolution 3-D volumes than would be possible with IMS
alone. In Aim 4, we will develop specifications for the open file formats used in this work, multilingual parsers to
ease access, and a URL-based Restful API to make (authorized) data exchange easy and accessible. We will
work with the consortium to build common coordinate atlases based on in vivo images and continue the work of
the currently funded project in specifying and developing easily disseminated file formats.
项目摘要-数据分析核心。VU-BIOMIC数据分析核心(DAC)的任务是
自动化所采集的多模态眼和胰腺组织的重建和后续分析
成像数据。这被转化为四个具体目标:(一)特定模式的数据处理;(二)数据分析
2-D和3-D分子组织映射的管道开发;(iii)用于建立3-D的映射构建
分子组织和功能;和(iv)财团协调。在目标1中,我们将开发方法,
准备所获取的测量数据,用于随后的空间整合、分析和内容挖掘,以及
在积分之前从测量中去除任何非生物学变化。在目标2中,发援会提供
快速提示数据质量评估和正在进行的多模态分析,因为新数据被整合到
地图集在分析前,我们将基于LC-MS/MS开发数据衍生的样品入选标准
测量,结合金标准组织病理学,以捕获什么是“正常”组织。以启用数据
海量三维多模态空间分辨数据集的挖掘,多个二维数据集的精确配准
将是至关重要的。我们将建立一个高分辨率的单峰3-D支架,使用前-
测量从每个单个组织切片获取的自体荧光显微镜。此外,三维数据
从连续切片重建的分析输出将在空间上链接(通过3D到3D
配准模型)与器官特异性体内和离体3-D扫描相关联,以将所获取的光谱数据与
更常见的医学成像模式。数据驱动的图像融合将使经验
发现潜在的相关,反相关,多元线性和非线性关系,
观测的不同方式,也提供了一个框架,估计到更高的空间分辨率
以及用于从一种模态到另一种模态的样本外预测。DAC将执行时间分辨
分析数据以发现分子含量如何随患者年龄变化。在目标3中,地图构建
阶段,我们将为测量和注释的各种数据类型带来第三个维度。数据驱动
图像融合将被用于推进三维地图,超越仅从一种技术中收集的内容,
包括IMS-AF融合驱动的样本外预测的应用。这将能够预测IMS
在没有测量IMS的切割深度处进行观察。这将有效地提供预测性上采样,
沿着z轴的3-D组织图,构建比IMS更精细的分辨率3-D体积
一个人在Aim 4中,我们将开发本工作中使用的开放文件格式的规范,多语言解析器,
易于访问,以及基于URL的Restful API,使(授权的)数据交换变得容易和可访问。我们将
与联合会合作,根据体内图像建立共同的坐标地图集,并继续开展以下工作:
目前供资的项目是指定和开发易于传播的文件格式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey M Spraggins其他文献
Jeffrey M Spraggins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey M Spraggins', 18)}}的其他基金
Multimodal Imaging Mass Spectrometry and Spatial Omics for the Human Kidney
人类肾脏的多模态成像质谱和空间组学
- 批准号:
10701835 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
Vanderbilt University Biomolecular Multimodal Imaging Center for 3-Dimensional Mapping of the Human Kidney
范德比尔特大学生物分子多模态成像中心进行人体肾脏 3 维绘图
- 批准号:
10530867 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
Vanderbilt University Biomolecular Multimodal Imaging Center for 3-Dimensional Mapping of the Human Kidney
范德比尔特大学生物分子多模态成像中心进行人体肾脏 3 维绘图
- 批准号:
10701832 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
Multimodal Imaging Mass Spectrometry and Spatial Omics for the Human Kidney
人类肾脏的多模态成像质谱和空间组学
- 批准号:
10515051 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 46.35万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 46.35万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 46.35万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 46.35万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 46.35万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 46.35万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 46.35万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 46.35万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 46.35万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 46.35万 - 项目类别:
Research Grant