Data Analysis Core
数据分析核心
基本信息
- 批准号:10254371
- 负责人:
- 金额:$ 27.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAgeAlgorithmsAtlasesAutomationBehaviorBiological AssayCalibrationClassificationComputer softwareConfidence IntervalsCuesDataData AnalysesData SetDevelopmentDimensionsDiseaseEyeFundingGleanGoalsGoldHigh Performance ComputingHistopathologyHumanImageIonsLinkMapsMathematicsMeasurementMeasuresMedical ImagingMethodsMicroscopyMiningModalityModelingMolecularMultilingualismMultimodal ImagingNormal tissue morphologyNormalcyOptical Coherence TomographyOrganOutputPancreasPatientsPhasePlayReportingResolutionSamplingScanningSourceSpecific qualifier valueSystemTechnologyTissue imagingTissuesTrainingTranslatingVariantVendorWorkanalysis pipelinebasecell typecomputerized data processingdata analysis pipelinedata exchangedata miningdata qualitydata visualizationdeep learningfile formatimaging modalityin vivoin vivo imaginginclusion criteriamicroscopic imagingmultimodal datamultimodalitynovel strategiesopen sourceparallelizationreconstructionscaffoldspatial integrationwhole slide imaging
项目摘要
PROJECT SUMMARY – Data Analysis Core. The VU-BIOMIC data analysis core (DAC) is tasked with
automation of the reconstruction and subsequent analysis of the acquired multimodal eye and pancreas tissue
imaging data. This is translated into four specific aims: (i) modality-specific data processing; (ii) data analysis
pipeline development for 2-D and 3-D molecular tissue mapping; (iii) map construction for establishing 3-D
molecular organization and function; and (iv) consortium coordination. In Aim 1, we will develop methods for
preparing acquired measurement data for subsequent spatial integration, analysis, and content mining, and to
remove any non-biological variation from the measurements prior to integration. In Aim 2, the DAC provides
rapid cues for data quality assessment and ongoing multimodal analysis as new data is integrated into the
atlases. Pre-analytically, we will develop data-derived sample inclusion criteria based on LC-MS/MS
measurements, combined with gold standard histopathology, to capture what is “normal” tissue. To enable data
mining of the massive 3-D multimodal spatially resolved datasets, accurate registration of multiple 2-D datasets
into 3-D volumes will be essential. We will build a high-resolution mono-modal 3-D scaffold, using pre-
measurement autofluorescence microscopy taken from every single tissue section. Furthermore, the 3-D data
and analysis outputs, reconstructed from serial sections, will be spatially linked (by means of 3-D-to-3-D
registration models) to the organ-specific in vivo and ex vivo 3-D scans to relate the acquired spectral data to
more commonly encountered medical imaging modalities. Data-driven image fusion will enable the empirical
discovery of potential correlative, anti-correlative, multivariate linear, and nonlinear relationships between
observations in the different modalities, and also provide a framework for estimating to higher spatial resolutions
as well as for out-of-sample prediction from one modality to another. The DAC will perform temporally resolved
analysis of the data to find how molecular content changes with patient age. In Aim 3, the map construction
phase, we will bring the third dimension to the varied data types that are measured and annotated. Data-driven
image fusion will be used to advance the 3-D maps beyond what can be gleaned from one technology alone,
including the application of IMS-AF-fusion-driven out-of-sample prediction. This will enable prediction of IMS
observations at cutting depths where no IMS is measured. This will effectively provide predictive up-sampling of
the 3-D tissue maps along the z-axis, building finer resolution 3-D volumes than would be possible with IMS
alone. In Aim 4, we will develop specifications for the open file formats used in this work, multilingual parsers to
ease access, and a URL-based Restful API to make (authorized) data exchange easy and accessible. We will
work with the consortium to build common coordinate atlases based on in vivo images and continue the work of
the currently funded project in specifying and developing easily disseminated file formats.
项目总结-数据分析核心。VU-BIOMIC数据分析核心(DAC)的任务是
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey M Spraggins其他文献
Jeffrey M Spraggins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey M Spraggins', 18)}}的其他基金
Multimodal Imaging Mass Spectrometry and Spatial Omics for the Human Kidney
人类肾脏的多模态成像质谱和空间组学
- 批准号:
10701835 - 财政年份:2022
- 资助金额:
$ 27.98万 - 项目类别:
Vanderbilt University Biomolecular Multimodal Imaging Center for 3-Dimensional Mapping of the Human Kidney
范德比尔特大学生物分子多模态成像中心进行人体肾脏 3 维绘图
- 批准号:
10530867 - 财政年份:2022
- 资助金额:
$ 27.98万 - 项目类别:
Vanderbilt University Biomolecular Multimodal Imaging Center for 3-Dimensional Mapping of the Human Kidney
范德比尔特大学生物分子多模态成像中心进行人体肾脏 3 维绘图
- 批准号:
10701832 - 财政年份:2022
- 资助金额:
$ 27.98万 - 项目类别:
Multimodal Imaging Mass Spectrometry and Spatial Omics for the Human Kidney
人类肾脏的多模态成像质谱和空间组学
- 批准号:
10515051 - 财政年份:2022
- 资助金额:
$ 27.98万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 27.98万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 27.98万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 27.98万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 27.98万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 27.98万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 27.98万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 27.98万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 27.98万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 27.98万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 27.98万 - 项目类别:
Research Grant