Interpretable graphical models for large multi-modal COPD data (R01HL159805)

大型多模态 COPD 数据的可解释图形模型 (R01HL159805)

基本信息

  • 批准号:
    10705824
  • 负责人:
  • 金额:
    $ 47.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-25 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

INTERPRETABLE GRAPHICAL MODELS FOR LARGE MULTI-MODAL COPD DATA ABSTRACT One of the most important tasks in today’s era of precision medicine is to understand the mechanisms and the factors affecting the development of clinical outcomes. Another important task is to develop interpretable, predictive models for outcomes. In the last years, many machine learning methods have dominated the task of predictive modeling, including deep learning, random forests and others. They are fueled by the unprecedent volume of data that have been generated in some research areas. However, the interpretability of these methods is not straight forward and their accuracy decreases when only small to medium size training datasets are available. Furthermore, their predictive models do not uncover the complex web of interactions between other variables in the dataset, which is essential for fully understanding disease mechanisms. Also, most such methods are not well suited to accommodate mixed data types (e.g., continuous, discrete) in the same dataset. Probabilistic graphical models (PGMs) offer a promising alternative to classical machine learning methods, because they are flexible and versatile. They can identify both the direct (causal) relations between variables, pointing to disease mechanisms, and build predictive models over diverse data, with good results even with smaller training datasets. They have been used for classification, biomarker selection, identification of modifiable risk factors of an outcome, or for mechanistic studies of perturbations of disease networks. In the previous years we extended the PGM theoretical framework to the analysis of mixed continuous and discrete variables, with or without unmeasured confounders; and we can now evaluate and incorporate prior information in mixed data graph learning. We successfully applied those methods to diverse clinically important problems, including malignancy prediction of undetermined lung nodules, identification of microbiome and other factors affecting pneumonia, selection of SNP biomarkers for combination treatment of cancer patients. Our objective is to develop novel interpretable methods for analysis of any-type data and use them to address clinically relevant questions in COPD, an important chronic lung disease. Method evaluation will be done on synthetic and real data, including parallel datasets with genomic, genetic, imaging and clinical COPD data. Our central aim is to identify factors of disease mechanisms of progression using different modalities of patient data. The deliverables will be (1) new PGM approaches for integrative analysis of any-type data; (2) a new, fully documented software package (in R, Python) that can be incorporated in other pipelines; (3) a new web portal to disseminate our methodologies to non-computer-savvy COPD researchers; (4) results on the pathogenesis and predictive features of chronic obstructive pulmonary disease (COPD). This cross-disciplinary team project is expected to have a positive impact beyond the above deliverables, since the generality of our approaches makes them suitable for studying any disease; and they can be easily integrated into personalized medicine strategies when high-throughput data collection will become a routine diagnostic procedure in all hospitals.
大型多模式copd数据的可解释图形模型

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FEV1/FVC Severity Stages for Chronic Obstructive Pulmonary Disease.
慢性阻塞性肺疾病的 FEV1/FVC 严重程度阶段。
Integrated unbiased multiomics defines disease-independent placental clusters in common obstetrical syndromes.
  • DOI:
    10.1186/s12916-023-03054-8
  • 发表时间:
    2023-09-08
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Barak, Oren;Lovelace, Tyler;Piekos, Samantha;Chu, Tianjiao;Cao, Zhishen;Sadovsky, Elena;Mouillet, Jean-Francois;Ouyang, Yingshi;Parks, W. Tony;Hood, Leroy;Price, Nathan D.;Benos, Panayiotis V.;Sadovsky, Yoel
  • 通讯作者:
    Sadovsky, Yoel
Constructing Causal Life-Course Models: Comparative Study of Data-Driven and Theory-Driven Approaches.
构建因果生命历程模型:数据驱动和理论驱动方法的比较研究。
  • DOI:
    10.1093/aje/kwad144
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Petersen,AnneHelby;Ekstrøm,ClausThorn;Spirtes,Peter;Osler,Merete
  • 通讯作者:
    Osler,Merete
CellularPotts.jl: simulating multiscale cellular models in Julia.
Early events marking lung fibroblast transition to profibrotic state in idiopathic pulmonary fibrosis.
  • DOI:
    10.1186/s12931-023-02419-0
  • 发表时间:
    2023-04-21
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PANAGIOTIS V BENOS其他文献

PANAGIOTIS V BENOS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PANAGIOTIS V BENOS', 18)}}的其他基金

COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
  • 批准号:
    10705838
  • 财政年份:
    2022
  • 资助金额:
    $ 47.25万
  • 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
  • 批准号:
    10689580
  • 财政年份:
    2022
  • 资助金额:
    $ 47.25万
  • 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
  • 批准号:
    10689574
  • 财政年份:
    2021
  • 资助金额:
    $ 47.25万
  • 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS
使用综合概率图模型进行慢性阻塞性肺病亚型和早期预测
  • 批准号:
    10206417
  • 财政年份:
    2021
  • 资助金额:
    $ 47.25万
  • 项目类别:
Mapping Age-Related Changes in the Lung
绘制肺部与年龄相关的变化
  • 批准号:
    10440882
  • 财政年份:
    2019
  • 资助金额:
    $ 47.25万
  • 项目类别:
Mapping Age-Related Changes in the Lung
绘制肺部与年龄相关的变化
  • 批准号:
    10020437
  • 财政年份:
    2019
  • 资助金额:
    $ 47.25万
  • 项目类别:
Mapping Age-Related Changes in the Lung
绘制肺部与年龄相关的变化
  • 批准号:
    10473606
  • 财政年份:
    2019
  • 资助金额:
    $ 47.25万
  • 项目类别:
Systems Biology of Diffusion Impairment in HIV
HIV扩散损伤的系统生物学
  • 批准号:
    10188612
  • 财政年份:
    2018
  • 资助金额:
    $ 47.25万
  • 项目类别:
Systems Biology of Diffusion Impairment in HIV
HIV扩散损伤的系统生物学
  • 批准号:
    9753361
  • 财政年份:
    2018
  • 资助金额:
    $ 47.25万
  • 项目类别:
Systems Level Causal Discovery in Heterogeneous TOPMed Data
异构 TOPMed 数据中的系统级因果发现
  • 批准号:
    9310591
  • 财政年份:
    2017
  • 资助金额:
    $ 47.25万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了