Targeting Mitochondrial Redox Capacity to Overcome Cancer Subtype that Regrowth After Radiation
针对线粒体氧化还原能力来克服放射后再生的癌症亚型
基本信息
- 批准号:10817512
- 负责人:
- 金额:$ 6.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:Animal ModelAntibioticsAzithromycinBiochemicalBiogenesisCell DeathCell SurvivalCellsCellular Metabolic ProcessCessation of lifeClinical TreatmentComputer softwareCoupledCytoplasmDataDoseElectron TransportEnzymesEventExhibitsExternal Beam Radiation TherapyFDA approvedFailureFluorescence MicroscopyGrowthHomeostasisHydrogen PeroxideImageImpairmentIn VitroMacrolidesMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateMediatingMetabolicMetabolic PathwayMetabolismMitochondriaMitochondrial DNAMitochondrial ProteinsMolecularMusNormal CellOxidation-ReductionOxidative PhosphorylationPathway interactionsPatientsPharmaceutical PreparationsPhasePropertyProstateProtein ArrayProteinsRadiationRadiation ToleranceRadiation therapyRadiosensitizationReactive Oxygen SpeciesRecurrenceRecurrent Malignant NeoplasmRegulationResearch DesignResistanceResistance developmentResolutionSiteTestingTherapeuticTimeTranslatingTranslational RepressionTranslationsTreatment EfficacyVisualizationXenograft Modelbioluminescence imagingcancer cellcancer heterogeneitycancer recurrencecancer subtypescancer survivalcatalasefractionated radiationhigh riskimprovedin vivoinhibitorinsightknock-downmetabolomicsmitochondrial dysfunctionmitochondrial metabolismmortalitymtTF1 transcription factornovelnovel therapeuticsoverexpressionpatient derived xenograft modelpreventprostate cancer cellprostate cancer modelprototyperadiation deliveryradiation resistanceradioresistantresponsestable isotopesuccesstempoltumortumor growthtumor heterogeneity
项目摘要
ABSTRACT (R01CA251663)
Radiation therapy (RT) is widely used to treat localized prostate cancer (PCa). However, cancer cells often
develop resistance to RT through unknown mechanisms, resulting in cancer recurrence. To improve RT, there
is a dire need to uncover cellular events that cause cells to become resistant. We previously demonstrated that
PCa heterogeneity, particularly in prostate cancers with an abundant mitochondria subpopulation, often survive
and regrow after RT (termed radiation resistant prostate cancer, or RR-PCa). Elevation of mitochondrial mass,
number, reactive oxygen species (ROS), and biogenesis markers is acquired in RR-PCa cells. We further
demonstrated that knockdown of the mitochondrial biogenesis regulator, TFAM (transcription factor A,
mitochondrial), significantly restored the sensitivity of RR-PCa cells to RT. Hence, our overarching hypothesis is
that RT-activated mitochondrial biogenesis, via ROS, is an acquisition mechanism that drives PCa survival post-
RT, a premise that will undergo stringent examination in the proposed studies. ROS are known to directly and
indirectly regulate mitochondrial homeostasis through fusion, fission, mitophagy, and biogenesis. We screened
FDA-approved drugs in search of compounds that are nontoxic to normal cells and have the ability to raise the
level of mitochondrial hydrogen peroxide (mtH2O2) in PCa cells while blocking mitochondrial protein translation.
We found azithromycin (AZM), a macrolide antibiotic, to be an effective prototype compound that possesses
both properties. We further demonstrated that AZM combined with RT enhances the death of PCa cells with an
abundant mitochondrial subpopulation, compared to AZM or RT alone. Thus, we propose to advance our findings
and identify the mechanism(s) that effectively inhibit the survival of post-irradiated cancer cells, to improve RT
efficacy. The specific aims are: 1) to define the molecular mechanism(s) by which RT-activated mitochondrial
biogenesis promotes cell survival and metabolic adaptations of PCa cells with abundant mitochondria, both in
vitro and in vivo; 2) to determine if overloading mtH2O2 to target inherent mitochondria and RT-acquired
mitochondria while blocking mitochondrial protein translation in RT-acquired mitochondria enhances
radiosensitivity of RR-PCa cells, and 3) to improve RT using a mtH2O2 generator and a mitochondrial protein
translation inhibitor, AZM as prototype, in an orthotopic mouse xenograft model and a patient-derived xenograft
model of PCa with activated mitochondrial biogenesis. This study uses state-of-the-art platforms including
reverse phase protein array, stable isotope-resolved metabolomics, total internal reflection fluorescence
microscopy with Imaris software, TEMPOL-enhanced MRI imaging, and a high resolution O2k-FluoRespirometer.
The proposed studies are expected to uncover novel molecular insights by which concurrently targeting
mitochondrial redox capacity and mitochondrial biogenesis improve RT efficacy in the treatment of RR-PCa.
摘要(R01CA251663)
放射治疗(RT)被广泛用于治疗局限性前列腺癌(PCa)。然而,癌细胞往往
通过未知的机制产生对RT的耐药性,导致癌症复发。为了改善RT,有以下几点
迫切需要发现导致细胞产生抵抗力的细胞事件。我们之前已经证明了
前列腺癌的异质性,特别是在具有丰富线粒体亚群的前列腺癌中,通常会存活下来
放疗后再生(称为耐辐射前列腺癌,或RR-PCA)。线粒体质量增加,
在RR-PCA细胞中获得数量、活性氧物种(ROS)和生物发生标志物。我们进一步
证明了线粒体生物发生调控因子TFAM(转录因子A,
线粒体),可显著恢复RR-PCA细胞对RT的敏感性。因此,我们的首要假设是
RT激活的线粒体生物发生,通过ROS,是一种获取机制,推动PCa存活后-
RT,这一前提将在拟议的研究中经过严格的审查。已知RO可直接和
通过融合、分裂、有丝分裂和生物发生来间接调节线粒体的动态平衡。我们放映了
FDA批准的药物,寻找对正常细胞无毒并有能力提高
阻断线粒体蛋白翻译时PCa细胞线粒体过氧化氢(MtH_2O_2)水平。
我们发现阿奇霉素(Azm),一种大环内酯类抗生素,是一种有效的原型化合物,具有
两处房产都有。我们进一步证明,AZM与RT联合使用可通过
与Azm或RT相比,线粒体亚群丰富。因此,我们建议将我们的发现
并找出能有效抑制照射后癌细胞存活的机制(S),提高RT
功效。其具体目的是:1)确定RT激活线粒体的分子机制(S)
生物发生促进线粒体丰富的前列腺癌细胞存活和代谢适应
体外和体内;2)确定mtH_2O_2超载是否针对固有线粒体和RT-获得性
逆转录获得的线粒体在阻断线粒体蛋白翻译的同时增强
RR-PCA细胞的辐射敏感性,以及3)使用线粒体过氧化氢生成器和线粒体蛋白改善RT
以AZM为原型的翻译抑制剂在小鼠原位异种移植模型和患者来源的异种移植中的应用
激活线粒体生物发生的前列腺癌模型。这项研究使用了最先进的平台,包括
反相蛋白质阵列、稳定同位素代谢组学、全内反射荧光
使用Imaris软件的显微成像、tempol增强的MRI成像和高分辨率O2k-FluoRespiroeter。
拟议的研究有望揭示同时靶向的新的分子洞察力
线粒体氧化还原能力和线粒体生物发生提高了RT治疗RR-PCa的疗效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luksana Chaiswing其他文献
Luksana Chaiswing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luksana Chaiswing', 18)}}的其他基金
Targeting Mitochondrial Redox Capacity to Overcome Cancer Subtype that Regrowth After Radiation
针对线粒体氧化还原能力来克服放射后再生的癌症亚型
- 批准号:
10600871 - 财政年份:2021
- 资助金额:
$ 6.16万 - 项目类别:
Targeting Mitochondrial Redox Capacity to Overcome Cancer Subtype that Regrowth After Radiation
针对线粒体氧化还原能力来克服放射后再生的癌症亚型
- 批准号:
10350707 - 财政年份:2021
- 资助金额:
$ 6.16万 - 项目类别:
Targeting Mitochondrial Redox Capacity to Overcome Cancer Subtype that Regrowth After Radiation
针对线粒体氧化还原能力来克服放射后再生的癌症亚型
- 批准号:
10208417 - 财政年份:2021
- 资助金额:
$ 6.16万 - 项目类别:
Mitochondrial Heat Shock Protein 90 as a Novel Target for Radiation Resistant Prostate Cancer Treatment
线粒体热休克蛋白 90 作为抗辐射前列腺癌治疗的新靶点
- 批准号:
10119761 - 财政年份:2020
- 资助金额:
$ 6.16万 - 项目类别:
Oxidized redox state, a new potential biomarker for prostate cancer progression
氧化还原态,前列腺癌进展的新潜在生物标志物
- 批准号:
9039015 - 财政年份:2015
- 资助金额:
$ 6.16万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 6.16万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 6.16万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 6.16万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 6.16万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 6.16万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 6.16万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 6.16万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 6.16万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 6.16万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 6.16万 - 项目类别:
Studentship














{{item.name}}会员




