Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
基本信息
- 批准号:10831643
- 负责人:
- 金额:$ 40.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAftercareBiopsyBreathingCancer EtiologyClinicalClinical ResearchConsumptionContrast MediaDevelopmentDiagnosisDiseaseGadoliniumHepaticHistologicImageImage AnalysisImaging TechniquesIncidenceKineticsLearningLesionLiverLiver DysfunctionLiver diseasesMagnetic Resonance ImagingMalignant NeoplasmsMapsMeasuresMethodsModelingMorphologic artifactsMotionOperative Surgical ProceduresPathologicPatient-Focused OutcomesPatientsPatternPerformancePerfusionPhasePrediction of Response to TherapyPrimary carcinoma of the liver cellsPrognosisRadialRecoveryResolutionSamplingSignal TransductionSpeedSystemic TherapyTechniquesTimeTranslatingTreatment EfficacyTumor AngiogenesisTumor BurdenUnited StatesVenousVisualanalysis pipelinecancer typecare costsclinical implementationclinical translationcontrast enhancedcurative treatmentsdata acquisitiondeep learningdeep learning modelfeasibility testingflexibilityimage reconstructionimaging biomarkerimprovedindividualized medicineineffective therapiesinsightinterestliver imagingmortalitymotion sensitivitynovelpreventrapid techniquereconstructionresponseroutine imagingside effectspatiotemporaltooltreatment strategytumortumor microenvironment
项目摘要
Project Summary
The broad objective of this application is to develop a rapid motion-robust and easy-to-use dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) framework for liver perfusion quantification and to evaluate
its performance in quantitative assessment of hepatocellular carcinoma (HCC), the most prevalent primary
malignancy in the liver. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using
gadolinium-based contrast agents is currently a cornerstone for identifying and characterizing hepatic lesions,
including HCC. However, the current clinical use of liver DCE-MRI is limited to visual assessment of the pattern
of perfusion in 3-4 multiphasic images (arterial, venous and delayed phases), and these images are routinely
acquired during multiple breath holds. DCE-MRI also has the potential for quantitative assessment of perfusion
kinetics, which can provide a deeper insight into the tumor microenvironment for non-invasive characterization
of different histological features of the tumor, such as tumor angiogenesis and aggressiveness. This is
particularly relevant for HCC, which is typically diagnosed based on imaging without pathological confirmation
from invasive biopsy. Unfortunately, conventional liver perfusion MRI techniques suffer from a number of
important limitations that restrict its clinical implementation, including (1) slow imaging speed, (2) limited
spatiotemporal resolution, (3) sensitivity to motion artifacts, and (4) time-consuming quantitative perfusion
analysis. Meanwhile, the need for pre-contrast T1 mapping to convert MR signal to gadolinium concentration
further complicates the already-cumbersome imaging workflow. These challenges and underlying complexity
have all led to non-reproducible performance of liver perfusion MRI and have significantly diminished its
ultimate clinical utility. In this project, we propose to develop new rapid MRI techniques combining novel
motion-robust sampling strategies and advanced reconstruction models to address these challenges. The new
imaging techniques will enable motion-robust 3D T1 mapping with whole-liver coverage for efficient estimation
of contrast concentration and free-breathing DCE-MRI of the liver with high spatiotemporal resolution. We will
also incorporate state-of-the-art methods in deep learning to further improve imaging performance, to reduce
reconstruction time, and to substantially simplify perfusion quantification. These new technical developments
will be integrated into a new liver perfusion MRI framework, which will be translated into the clinical setting for
assessment of HCC in an exploratory clinical study. The overall hypothesis is that with the new imaging
framework developed in the project, robust high spatiotemporal resolution perfusion MRI of the liver can be
achieved under free breathing, and absolute quantification of liver perfusion can be performed without user-
interaction. Given the rapidly rising incidence and substantial burden of HCC in the United States, successful
completion of this project would enable significant progress towards improved characterization and
management of HCC and other liver diseases with high clinical impact.
项目摘要
该应用程序的主要目标是开发一种快速运动-强大且易于使用的动态对比度-
增强磁共振成像(DCE-MRI)框架,用于肝脏灌注定量,并评估
它在肝细胞癌(HCC)定量评估中的表现,
肝脏恶性肿瘤动态对比增强磁共振成像(DCE-MRI),
基于钆的造影剂目前是用于识别和表征肝脏病变的基础,
包括HCC。然而,目前肝脏DCE-MRI的临床应用仅限于对模式的视觉评估
灌注在3-4个多相图像(动脉,静脉和延迟相),这些图像是常规的
是在多次屏气中获得的DCE-MRI还具有定量评估灌注的潜力
动力学,可以为非侵入性表征提供对肿瘤微环境的更深入了解
肿瘤的不同组织学特征,如肿瘤血管生成和侵袭性。这是
尤其与HCC相关,HCC通常基于成像诊断而无病理学证实
侵入性活检不幸的是,传统的肝脏灌注MRI技术受到许多缺陷的影响。
限制其临床实施的重要局限性,包括(1)成像速度慢,(2)有限
时空分辨率,(3)对运动伪影的灵敏度,以及(4)耗时的定量灌注
分析.同时,需要预对比T1标测将MR信号转换为钆浓度
进一步使已经麻烦的成像工作流程复杂化。这些挑战和潜在的复杂性
都导致了肝脏灌注MRI的不可再现性能,并显著降低了其
最终的临床效用。在这个项目中,我们建议开发新的快速MRI技术,
运动鲁棒采样策略和先进的重建模型来应对这些挑战。新
成像技术将实现运动鲁棒的3D T1映射,覆盖整个肝脏,以进行有效的估计
对比剂浓度和自由呼吸DCE-MRI的肝脏具有高时空分辨率。我们将
还将最先进的方法纳入深度学习,以进一步提高成像性能,
重建时间,并大大简化灌注定量。这些新的技术发展
将被整合到一个新的肝脏灌注MRI框架中,该框架将被转化为临床环境,
在探索性临床研究中评估HCC。总的假设是,随着新的成像
在该项目中开发的框架,强大的高时空分辨率灌注MRI的肝脏可以
在自由呼吸下实现,并且可以在没有用户的情况下执行肝脏灌注的绝对量化。
互动考虑到美国HCC发病率的迅速上升和巨大的负担,
该项目完成后,将在改进特征描述方面取得重大进展,
治疗HCC和其他具有高临床影响的肝脏疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Feng其他文献
A Novel Web Service QoS Collaborative Prediction Approach with Biased Baseline
一种新颖的带偏差基线的 Web 服务 QoS 协作预测方法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Shen Limin;Chen Zhen;Li Feng - 通讯作者:
Li Feng
Li Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Feng', 18)}}的其他基金
3D Free-Breathing Fat and Iron Corrected T1 Mapping
3D 自由呼吸脂肪和铁校正 T1 映射
- 批准号:
10432272 - 财政年份:2022
- 资助金额:
$ 40.77万 - 项目类别:
3D Free-Breathing Fat and Iron Corrected T1 Mapping
3D 自由呼吸脂肪和铁校正 T1 映射
- 批准号:
10831651 - 财政年份:2022
- 资助金额:
$ 40.77万 - 项目类别:
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
- 批准号:
10430267 - 财政年份:2021
- 资助金额:
$ 40.77万 - 项目类别:
Rapid Structure-Function MRI of the Lung for Post-COVID-19 Management
用于 COVID-19 后管理的肺部快速结构功能 MRI
- 批准号:
10181576 - 财政年份:2021
- 资助金额:
$ 40.77万 - 项目类别:
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
- 批准号:
10297597 - 财政年份:2021
- 资助金额:
$ 40.77万 - 项目类别:
Rapid Structure-Function MRI of the Lung for Post-COVID-19 Management
用于 COVID-19 后管理的肺部快速结构功能 MRI
- 批准号:
10831646 - 财政年份:2021
- 资助金额:
$ 40.77万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Research Grant