Rapid Structure-Function MRI of the Lung for Post-COVID-19 Management

用于 COVID-19 后管理的肺部快速结构功能 MRI

基本信息

  • 批准号:
    10831646
  • 负责人:
  • 金额:
    $ 108.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-03 至 2025-09-02
  • 项目状态:
    未结题

项目摘要

Project Summary The pandemic of coronavirus disease 2019 (COVID-19) has presented an unprecedented crisis and challenge to public health, with tremendous health care and economic burden to our society. Given the high morbidity of this new disease and increasing findings on COVID-associated complications, it has emerged as an important and urgent clinical need to investigate the sequelae in patients recovered from COVID-19 (post-COVID patients), particularly with respect to residual long-term lung damage such as post-COVID decline of pulmonary function and/or development of lung structure abnormality. This will ensure that the long-term outcomes of post-COVID patients can be studied, better understood, and properly managed. At present, Computed Tomography (CT) is the gold standard for imaging lung anatomy, but its radiation burden precludes frequent longitudinal evaluations. Pulmonary function is currently evaluated by spirometry or plethysmography, which provide global measures of function but this is inadequate for assessing the extent of disease heterogeneity. The overarching aim of this application is to develop novel rapid free-breathing four-dimensional (4D=3D+motion) lung MRI techniques that will enable frequent evaluation of lung anatomy and function in the longitudinal follow-ups of post-COVID patients. These new methods will be based on a combination of compressed sensing and golden-angle radial acquisition, with incorporation of the latest advances in deep learning, which are all pioneered by our research team. Specifically, we propose to develop, optimize and evaluate a 10-minute free-breathing lung MRI protocol that will enable one-stop-shop characterization of whole lung anatomy and spatially-resolved pulmonary function without administration of contrast media. The overall hypothesis is that the proposed 4D MRI techniques can serve as a potential radiation-free alternative to CT for longitudinal evaluation of lung structure change and a better alternative to spirometry for deriving regional function parameters that could provide additional novel insights into the heterogeneity of lung ventilation and associated lung diseases. Our proposal includes the following three specific aims: (i) development of motion-resolved 4D UTE-MRI (MRI with ultra-shot echo times) for submillimeter resolution free-breathing whole-lung imaging, (ii) development of deep breathing-based 4D UTE-MRI for deriving global/regional pulmonary function parameters, and (iii) development of deep learning- based lung segmentation for efficient and automated estimation of pulmonary function parameters. Successful completion of this project will deliver non-invasive, non-contrast-enhanced, and free-breathing 4D MRI techniques for rapid assessment of lung anatomy and pulmonary function. Given the overwhelming prevalence of COVID-19 and the overall cumulative incidence in the United States, our novel imaging methods would provide a unique opportunity to augment post-COVID care, particularly for identifying COVID-19-induced lung fibrosis in a timely manner and for studying the longitudinal changes of lung anatomy and global/regional pulmonary function. These methods could also be extended for evaluation of other pulmonary diseases.
项目总结

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Golden-Angle Radial MRI: Basics, Advances, and Applications.
Performance of spiral UTE-MRI of the lung in post-COVID patients.
  • DOI:
    10.1016/j.mri.2022.12.002
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Fauveau, Valentin;Jacobi, Adam;Bernheim, Adam;Chung, Michael;Benkert, Thomas;Fayad, Zahi A.;Feng, Li
  • 通讯作者:
    Feng, Li
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li Feng其他文献

A Novel Web Service QoS Collaborative Prediction Approach with Biased Baseline
一种新颖的带偏差基线的 Web 服务 QoS 协作预测方法

Li Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li Feng', 18)}}的其他基金

Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
  • 批准号:
    10831643
  • 财政年份:
    2023
  • 资助金额:
    $ 108.34万
  • 项目类别:
3D Free-Breathing Fat and Iron Corrected T1 Mapping
3D 自由呼吸脂肪和铁校正 T1 映射
  • 批准号:
    10432272
  • 财政年份:
    2022
  • 资助金额:
    $ 108.34万
  • 项目类别:
3D Free-Breathing Fat and Iron Corrected T1 Mapping
3D 自由呼吸脂肪和铁校正 T1 映射
  • 批准号:
    10831651
  • 财政年份:
    2022
  • 资助金额:
    $ 108.34万
  • 项目类别:
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
  • 批准号:
    10430267
  • 财政年份:
    2021
  • 资助金额:
    $ 108.34万
  • 项目类别:
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
  • 批准号:
    10297597
  • 财政年份:
    2021
  • 资助金额:
    $ 108.34万
  • 项目类别:
Rapid Structure-Function MRI of the Lung for Post-COVID-19 Management
用于 COVID-19 后管理的肺部快速结构功能 MRI
  • 批准号:
    10181576
  • 财政年份:
    2021
  • 资助金额:
    $ 108.34万
  • 项目类别:

相似海外基金

Connectomes arising: linking structure and function in neocortical wiring.
连接组的出现:连接新皮质接线中的结构和功能。
  • 批准号:
    DP240102384
  • 财政年份:
    2024
  • 资助金额:
    $ 108.34万
  • 项目类别:
    Discovery Projects
Integrating Perception and Communication: The Function of Acoustic Fine Structure in Natural Zebra Finch Communication
感知与交流的整合:声学精细结构在天然斑胸草雀交流中的作用
  • 批准号:
    2321788
  • 财政年份:
    2024
  • 资助金额:
    $ 108.34万
  • 项目类别:
    Standard Grant
CAREER: Breaking Down the Structure-function Relationships in Enzymes that Catabolize Chlorophyll
职业:打破叶绿素分解酶的结构与功能关系
  • 批准号:
    2338329
  • 财政年份:
    2024
  • 资助金额:
    $ 108.34万
  • 项目类别:
    Continuing Grant
Structure and Function of Cyclodipeptide Oxidase-Like Enzyme Filaments
环二肽氧化酶样酶丝的结构和功能
  • 批准号:
    2400768
  • 财政年份:
    2024
  • 资助金额:
    $ 108.34万
  • 项目类别:
    Standard Grant
Structure and function of the chloroplast transcription machinery
叶绿体转录机制的结构和功能
  • 批准号:
    MR/X033481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 108.34万
  • 项目类别:
    Fellowship
Exploration of cortical structure and function in human infancy with advanced MRI methods
利用先进的 MRI 方法探索人类婴儿期皮质结构和功能
  • 批准号:
    MR/Y009665/1
  • 财政年份:
    2024
  • 资助金额:
    $ 108.34万
  • 项目类别:
    Fellowship
Structure and Function of Cullin3 E3 ligase complexes
Cullin3 E3 连接酶复合物的结构和功能
  • 批准号:
    489003
  • 财政年份:
    2023
  • 资助金额:
    $ 108.34万
  • 项目类别:
    Operating Grants
Development of on-chip membrane protein preparation method and structure/function analysis of giant membrane proteins
片上膜蛋白制备方法开发及巨膜蛋白结构/功能分析
  • 批准号:
    23K04926
  • 财政年份:
    2023
  • 资助金额:
    $ 108.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vitamin scavenging in the gut: Structure/function of the tight-binding B12 foraging machinery in Bacteroides - and its biotechnological applications
肠道中的维生素清除:拟杆菌中紧密结合的 B12 觅食机制的结构/功能 - 及其生物技术应用
  • 批准号:
    BB/X001946/1
  • 财政年份:
    2023
  • 资助金额:
    $ 108.34万
  • 项目类别:
    Research Grant
The Endoplasmic Reticulum (ER) Conference: Structure, Function and Disease
内质网 (ER) 会议:结构、功能和疾病
  • 批准号:
    2310351
  • 财政年份:
    2023
  • 资助金额:
    $ 108.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了