Rapid Structure-Function MRI of the Lung for Post-COVID-19 Management
用于 COVID-19 后管理的肺部快速结构功能 MRI
基本信息
- 批准号:10181576
- 负责人:
- 金额:$ 37.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-03 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional4D Imaging4D MRIAdult Respiratory Distress SyndromeAffectAirAnatomyBreathingCOVID-19COVID-19 monitoringCOVID-19 pandemicCOVID-19 patientCaringChronicClinicalContrast MediaDevelopmentDiagnosticDimensionsDiseaseEarly identificationEconomic BurdenEnsureEvaluationFoundationsFour-dimensionalGoldHealthcareHeterogeneityImageImaging TechniquesIncidenceInflammationInvestigationIonizing radiationLeadLongitudinal StudiesLungLung CapacityLung diseasesMagnetic Resonance ImagingMeasuresMethodsMorbidity - disease rateMotionOutcomePatientsPerformancePlethysmographyPrevalenceProtocols documentationPublic HealthPulmonary FibrosisPulmonary function testsRadialRadiationRadiation exposureRecording of previous eventsResearchResidual stateResolutionRespiratory FailureRiskScanningSocietiesSpirometryStructural defectStructureTimeUnited StatesVariantViral PneumoniaX-Ray Computed Tomographybasecare burdenchest computed tomographyclinical imagingcoronavirus diseasedeep learningdisease heterogeneityimage reconstructionimaging modalityinsightlung basal segmentlung developmentlung imaginglung injurylung lobelung volumenovelpreventpulmonary functionpulmonary function declinerapid techniquerespiratorysoft tissueventilationvolunteer
项目摘要
Project Summary
The pandemic of coronavirus disease 2019 (COVID-19) has presented an unprecedented crisis and challenge
to public health, with tremendous health care and economic burden to our society. Given the high morbidity of
this new disease and increasing findings on COVID-associated complications, it has emerged as an important
and urgent clinical need to investigate the sequelae in patients recovered from COVID-19 (post-COVID patients),
particularly with respect to residual long-term lung damage such as post-COVID decline of pulmonary function
and/or development of lung structure abnormality. This will ensure that the long-term outcomes of post-COVID
patients can be studied, better understood, and properly managed. At present, Computed Tomography (CT) is
the gold standard for imaging lung anatomy, but its radiation burden precludes frequent longitudinal evaluations.
Pulmonary function is currently evaluated by spirometry or plethysmography, which provide global measures of
function but this is inadequate for assessing the extent of disease heterogeneity. The overarching aim of this
application is to develop novel rapid free-breathing four-dimensional (4D=3D+motion) lung MRI techniques that
will enable frequent evaluation of lung anatomy and function in the longitudinal follow-ups of post-COVID patients.
These new methods will be based on a combination of compressed sensing and golden-angle radial acquisition,
with incorporation of the latest advances in deep learning, which are all pioneered by our research team.
Specifically, we propose to develop, optimize and evaluate a 10-minute free-breathing lung MRI protocol that
will enable one-stop-shop characterization of whole lung anatomy and spatially-resolved pulmonary function
without administration of contrast media. The overall hypothesis is that the proposed 4D MRI techniques can
serve as a potential radiation-free alternative to CT for longitudinal evaluation of lung structure change and a
better alternative to spirometry for deriving regional function parameters that could provide additional novel
insights into the heterogeneity of lung ventilation and associated lung diseases. Our proposal includes the
following three specific aims: (i) development of motion-resolved 4D UTE-MRI (MRI with ultra-shot echo times)
for submillimeter resolution free-breathing whole-lung imaging, (ii) development of deep breathing-based 4D
UTE-MRI for deriving global/regional pulmonary function parameters, and (iii) development of deep learning-
based lung segmentation for efficient and automated estimation of pulmonary function parameters. Successful
completion of this project will deliver non-invasive, non-contrast-enhanced, and free-breathing 4D MRI
techniques for rapid assessment of lung anatomy and pulmonary function. Given the overwhelming prevalence
of COVID-19 and the overall cumulative incidence in the United States, our novel imaging methods would provide
a unique opportunity to augment post-COVID care, particularly for identifying COVID-19-induced lung fibrosis in
a timely manner and for studying the longitudinal changes of lung anatomy and global/regional pulmonary
function. These methods could also be extended for evaluation of other pulmonary diseases.
项目摘要
2019冠状病毒病(COVID-19)大流行带来了前所未有的危机和挑战
对公共健康的影响,给我们的社会带来巨大的医疗和经济负担。鉴于高发病率,
这种新的疾病和不断增加的新冠病毒相关并发症的发现,它已成为一个重要的
以及迫切的临床需求,以调查从COVID-19中康复的患者(COVID后患者)的后遗症,
特别是对于残留的长期肺损伤,如COVID后肺功能下降
和/或肺结构异常的发展。这将确保COVID后的长期结果
患者可以被研究,更好地理解,并得到适当的管理。目前,计算机断层扫描(CT)
肺解剖成像的黄金标准,但其辐射负担排除了频繁的纵向评价。
肺功能目前通过肺量测定法或体积描记法来评估,其提供了肺功能的总体测量。
但这不足以评估疾病异质性的程度。这项工作的首要目标是,
应用是开发新的快速自由呼吸四维(4D=3D+运动)肺MRI技术,
将能够在COVID后患者的纵向随访中频繁评估肺解剖结构和功能。
这些新方法将基于压缩传感和黄金角径向采集的组合,
结合了深度学习的最新进展,这些都是由我们的研究团队开创的。
具体来说,我们建议开发、优化和评估10分钟自由呼吸肺部MRI方案,
将实现全肺解剖和空间分辨肺功能的一站式表征
而不使用造影剂。总体假设是,所提出的4D MRI技术可以
作为一种潜在的无辐射替代CT纵向评估肺结构的变化,
更好地替代肺量测定法,用于导出区域功能参数,
深入了解肺通气和相关肺部疾病的异质性。我们的建议包括
以下三个具体目标:(i)开发运动分辨4D UTE-MRI(具有超激发回波时间的MRI)
对于亚毫米分辨率的自由呼吸全肺成像,(ii)开发基于深呼吸的4D
UTE-MRI,用于导出全局/局部肺功能参数,以及(iii)开发深度学习-
基于肺分割的肺功能参数的有效和自动估计。成功
该项目的完成将提供非侵入性、非对比增强和自由呼吸的4D MRI
快速评估肺解剖结构和肺功能的技术。考虑到这种疾病
的COVID-19和美国的总体累积发病率,我们的新型成像方法将提供
一个独特的机会,以加强后COVID护理,特别是用于确定COVID-19诱导的肺纤维化,
及时地和用于研究肺解剖和全局/区域肺的纵向变化
功能这些方法也可以扩展到其他肺部疾病的评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Feng其他文献
A Novel Web Service QoS Collaborative Prediction Approach with Biased Baseline
一种新颖的带偏差基线的 Web 服务 QoS 协作预测方法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Shen Limin;Chen Zhen;Li Feng - 通讯作者:
Li Feng
Li Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Feng', 18)}}的其他基金
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
- 批准号:
10831643 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
3D Free-Breathing Fat and Iron Corrected T1 Mapping
3D 自由呼吸脂肪和铁校正 T1 映射
- 批准号:
10432272 - 财政年份:2022
- 资助金额:
$ 37.04万 - 项目类别:
3D Free-Breathing Fat and Iron Corrected T1 Mapping
3D 自由呼吸脂肪和铁校正 T1 映射
- 批准号:
10831651 - 财政年份:2022
- 资助金额:
$ 37.04万 - 项目类别:
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
- 批准号:
10430267 - 财政年份:2021
- 资助金额:
$ 37.04万 - 项目类别:
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
- 批准号:
10297597 - 财政年份:2021
- 资助金额:
$ 37.04万 - 项目类别:
Rapid Structure-Function MRI of the Lung for Post-COVID-19 Management
用于 COVID-19 后管理的肺部快速结构功能 MRI
- 批准号:
10831646 - 财政年份:2021
- 资助金额:
$ 37.04万 - 项目类别:
相似海外基金
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/Y003586/1 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
Training Grant
Observation for dynamic process of dental caries by in situ 4D imaging
原位4D成像观察龋齿动态过程
- 批准号:
23K16022 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/X009262/1 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
Training Grant
4D Imaging of Biofunctional Information by Multidimensional Measurement and Lightwave Manipulation of Scattered Light
通过多维测量和散射光的光波操纵对生物功能信息进行 4D 成像
- 批准号:
23KJ1570 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the principles of physiological and pathological vascular remodeling via 4D imaging of live mouse skin
通过活体小鼠皮肤 4D 成像研究生理和病理血管重塑的原理
- 批准号:
10739431 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
4D imaging of the dynamic molecular, cellular and tissue organization in living systems
生命系统中动态分子、细胞和组织组织的 4D 成像
- 批准号:
BB/W020335/1 - 财政年份:2022
- 资助金额:
$ 37.04万 - 项目类别:
Research Grant
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2021
- 资助金额:
$ 37.04万 - 项目类别:
Discovery Grants Program - Individual
confocal microscope for 4D imaging of multicellular structure and activity
用于多细胞结构和活性 4D 成像的共焦显微镜
- 批准号:
465594799 - 财政年份:2021
- 资助金额:
$ 37.04万 - 项目类别:
Major Research Instrumentation
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2020
- 资助金额:
$ 37.04万 - 项目类别:
Discovery Grants Program - Individual
4D imaging of arterial-wall fiber structure under pulsatile conditions by using synchrotron radiation phase-contrast CT
使用同步辐射相衬 CT 对脉动条件下的动脉壁纤维结构进行 4D 成像
- 批准号:
20K21899 - 财政年份:2020
- 资助金额:
$ 37.04万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)