Center of Biomedical Research Excellence in Matrix Biology Phase II

基质生物学卓越生物医学研究中心第二期

基本信息

  • 批准号:
    10844074
  • 负责人:
  • 金额:
    $ 72.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

1. PROJECT SUMMARY - Role of Cellular Mechanotransduction of Low Intensity Vibrations in Regulating Extracellular Matrix Synthesis 1.1. Summarize the goal of the parent award: The long-term goal of the Center of Biomedical Research Excellence (COBRE) in Matrix Biology is to establish, enhance, and actively advance a multidisciplinary research center focusing on improving our understanding of the role of the extracellular matrix in development, health, and disease, and contributing to the prevention, treatment, and cure for diseases of high priority. The specific aims of the COBRE Matrix Biology Parent award are: 1) enhance and grow upon the critical mass of investigators established around the thematic multidisciplinary focus of matrix biology, 2) enhance biomedical research core capabilities, 3) grow research collaborations with existing programs, and 4) enhance research training opportunities. This project will supplement the existing COBRE Matrix Biology award to form a new team of investigators that bring together three investigators from IDeA states with different perspectives and expertise to address complex basic, behavioral, clinical and/or translational research questions with complementary approaches. The research question does not duplicate those currently being pursued by the parent award and clearly benefits from the collective efforts of the collaboration. 1.2 Research question to be addressed by the supplement award: Engineering biophysical signals promises non-pharmacologic interventions to direct tissue regeneration in conditions that devastate bone such as osteoporosis, aging, injury, bedrest, or microgravity. Externally applied Low-Intensity Vibrations (LIV), a mechanical signal similar to muscle activity, offers a readily usable technology to stimulate Mesenchymal Stem Cell (MSC) anabolism for both tissue engineering and clinical approaches. LIV does not generate significant matrix deformations in vivo, thus excluding most mechano-transduction mechanisms previously proposed for high-magnitude and low-frequency mechanical signals (e.g., exercise). This presents a significant gap knowledge about bone mechanobiology and prevents utilization of LIV as an effective treatment for bone loss. MSC’s ability to replace and rejuvenate bone cell populations are informed by both dynamic mechanical forces generated during daily activities (e.g. muscle activity) and by the quality of the Extracellular Matrix (ECM). Yes1 Associated Protein (YAP) is a transcriptional co-activator that can activate the expression of genes in response to mechanical force, including ECM molecules such as Connective Tissue Growth Factor (CTGF) to regulate collagen production in cells. For tissue engineering and clinical approaches to ultimately succeed, causative information on how high-frequency signals generated by LIV are sensed, transduced, and eventually lead to nuclear YAP expression and ECM production is critical. This proposal aims to address a fundamental gap in bone mechanobiology by mechanistically establishing a mechanosensory function of the cell nucleus to respond to dynamic accelerations produced by LIV. Using our novel team approach, we will test whether LIV generates relative motions of the nucleus within a cell to strengthen nucleo-cytoskeletal scaffolding and to increase force-induced YAP signaling in the cell nuclei to elicit ECM production. We will address this through three sub-hypotheses and specific aims. The aims of this study are to determine in live cells if 1) vibration frequency and acceleration modulate the LIV- induced nuclear motions and resulting F-actin remodeling, 2) LIV-induced perinuclear F-actin remodeling will increase cytoskeletal tension on the nucleus, 3) the magnitude of cytoskeletal tension on the nucleus determines the magnitude of YAP nuclear entry and ECM production. Completion of these aims will provide knowledge on (1) how to enhance the efficacy of LIV-based regenerative modalities in clinic, and (2) foundational structure-function relationships in MSCs. Results will ultimately enable engineering LIV-based approaches that target nucleo-cytoskeletal connectivity with application in many areas including, but not limited to, tissue regeneration, tissue engineering, and aging. 1.3 Benefit of team science effort: This proposed supplement cannot be accomplished by any single investigator and requires an orchestrated effort by three investigators working in different fields: cell mechanobiology, machine learning, and computational biomechanics. Co-Project Lead (CPL) Uzer will work on establishing experimental methods to measure nuclear motion, high-fidelity cell and biological outcomes, ECM production, and nuclear YAP levels. CPL Satici will focus on developing machine learning algorithms to reconstruct 3D nuclear and cytoskeletal geometries in response to LIV in live cells. CPL Fitzpatrick will develop finite element (FE) models to quantify cytoskeletal forces on the nucleus under LIV treatment. Upon successful completion of this work, our team will establish, for the first time, a novel pipeline for data-driven, cell-specific FE models for understanding force-function relationships in cells. This novel method will lead us to new grant submissions to study the role of cell-specific forces in maintaining healthy cell function and ECM composition as well as informing new translational studies that use LIV to attenuate disease progression both in vitro and in vivo.
1.项目概要-低强度振动的细胞机械转导在调节 细胞外基质合成 1.1.总结家长奖的目标:生物医学研究中心的长期目标 卓越(COBRE)在基质生物学是建立,加强,并积极推进多学科研究 中心的重点是提高我们对细胞外基质在发育,健康, 和疾病,并为预防、治疗和治愈高度优先的疾病做出贡献。具体 COBRE矩阵生物学父母奖的目标是:1)提高和发展研究人员的临界质量 围绕基质生物学主题建立多学科重点,2)提升生物医学研究核心 能力,3)与现有项目开展研究合作,4)加强研究培训 机会该项目将补充现有的COBRE矩阵生物学奖,形成一个新的团队, 来自IDEA州的三名研究人员聚集在一起,他们具有不同的观点和专业知识, 解决复杂的基础、行为、临床和/或转化研究问题, 接近。研究问题不重复目前正在进行的父母奖, 显然受益于合作的集体努力。 1.2补充奖要解决的研究问题:工程生物物理信号的承诺 非药物干预,以指导骨质疏松症患者的组织再生, 骨质疏松、衰老、受伤、卧床休息或微重力。外部施加的低强度振动(LIV),a 类似于肌肉活动的机械信号,提供了一种易于使用的技术来刺激间充质干细胞 细胞(MSC)的组织工程和临床方法。LIV不会产生显著的 体内基质变形,因此排除了以前提出的大多数机械转导机制, 高幅度和低频机械信号(例如,锻炼)。这是一个巨大的差距。 骨机械生物学知识,并阻止利用LIV作为骨丢失的有效治疗。 MSC的能力,以取代和振兴骨细胞群体是由两个动态的机械力 在日常活动(如肌肉活动)中产生的,并通过细胞外基质(ECM)的质量。Yes1 相关蛋白(雅普)是一种转录辅激活因子,可以激活基因的表达以响应 机械力,包括ECM分子,如结缔组织生长因子(CTGF),以调节 细胞中的胶原蛋白生成。为了使组织工程和临床方法最终取得成功, 关于LIV产生的高频信号如何被感测、转换并最终导致 核雅普表达和ECM产生是关键的。 该提案旨在通过机械地建立一个骨机械生物学的基本缺口, 细胞核对LIV产生的动态加速度的机械感觉功能。使用我们 新的团队方法,我们将测试LIV是否产生细胞内细胞核的相对运动, 加强核细胞骨架支架并增加细胞核中力诱导的雅普信号传导, ECM生产。我们将通过三个子假设和具体目标来解决这个问题。 本研究的目的是确定在活细胞中,如果1)振动频率和加速度调制LIV- 诱导的核运动和导致的F-肌动蛋白重塑,2)LIV诱导的核周F-肌动蛋白重塑将 增加细胞核上的细胞骨架张力,3)细胞核上的细胞骨架张力的大小决定了 雅普核进入和ECM产生的幅度。 这些目标的完成将提供以下方面的知识:(1)如何提高基于LIV的再生免疫疗法的功效, 临床模式;(2)MSC的基本结构-功能关系。结果将最终使 工程化基于LIV的方法,其靶向核-细胞骨架连接性,并在许多领域中应用 包括但不限于组织再生、组织工程和老化。 1.3团队科学努力的好处:这项拟议的补充不能由任何单一的 需要三名在不同领域工作的调查人员协调努力: 机械生物学、机器学习和计算生物力学。联合项目负责人(CPL)Uzer将 致力于建立测量核运动、高保真细胞和生物结果的实验方法, ECM产生和核雅普水平。CPL Saintle将专注于开发机器学习算法, 在活细胞中响应LIV重建3D核和细胞骨架几何形状。CPL菲茨帕特里克将开发 有限元(FE)模型,以量化LIV治疗下细胞核上的细胞骨架力。一旦成功 完成这项工作后,我们的团队将首次建立一个新的管道,用于数据驱动的细胞特异性FE 理解细胞中力-功能关系的模型。这种新方法将引导我们找到新的格兰特 提交研究细胞特异性力在维持健康细胞功能和ECM组成中的作用, 并为使用LIV在体外和体内减缓疾病进展的新的翻译研究提供信息。

项目成果

期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Shape of the Jaw-Zebrafish Col11a1a Regulates Meckel's Cartilage Morphogenesis and Mineralization.
颌骨Col11a1a的形状调节了梅克尔的软骨形态发生和矿化。
  • DOI:
    10.3390/jdb10040040
  • 发表时间:
    2022-09-22
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Reeck, Jonathon C.;Oxford, Julia Thom
  • 通讯作者:
    Oxford, Julia Thom
Quantitative Determination of Vinpocetine in Dietary Supplements.
膳食补充剂中长春西汀的定量测定。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    French,JohnMT;King,MatthewD;McDougal,OwenM
  • 通讯作者:
    McDougal,OwenM
Print-A-Punch: A 3D printed device to cut dumbbell-shaped specimens from soft tissue for tensile testing.
  • DOI:
    10.1016/j.jbiomech.2020.110011
  • 发表时间:
    2020-11-09
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Nelson SJ;Creechley JJ;Wale ME;Lujan TJ
  • 通讯作者:
    Lujan TJ
Quantifying wear depth in hip prostheses using a 3D optical scanner.
Purification and Isolation of Proteins from Hyaline Cartilage.
从透明软骨中纯化和分离蛋白质。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JULIA THOM OXFORD其他文献

JULIA THOM OXFORD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JULIA THOM OXFORD', 18)}}的其他基金

Center of Biomedical Research
生物医学研究中心
  • 批准号:
    8625918
  • 财政年份:
    2014
  • 资助金额:
    $ 72.34万
  • 项目类别:
Center of Biomedical Research
生物医学研究中心
  • 批准号:
    9310452
  • 财政年份:
    2014
  • 资助金额:
    $ 72.34万
  • 项目类别:
Center of Biomedical Research Excellence in Matrix Biology Phase II
基质生物学卓越生物医学研究中心第二期
  • 批准号:
    10415171
  • 财政年份:
    2014
  • 资助金额:
    $ 72.34万
  • 项目类别:
Center of Biomedical Research Excellence in Matrix Biology Phase II
基质生物学卓越生物医学研究中心第二期
  • 批准号:
    10640905
  • 财政年份:
    2014
  • 资助金额:
    $ 72.34万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10640906
  • 财政年份:
    2014
  • 资助金额:
    $ 72.34万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10894421
  • 财政年份:
    2014
  • 资助金额:
    $ 72.34万
  • 项目类别:
Center of Biomedical Research Excellence in Matrix Biology Phase II
基质生物学卓越生物医学研究中心第二期
  • 批准号:
    10397810
  • 财政年份:
    2014
  • 资助金额:
    $ 72.34万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    8653269
  • 财政年份:
    2014
  • 资助金额:
    $ 72.34万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10226308
  • 财政年份:
    2014
  • 资助金额:
    $ 72.34万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10415172
  • 财政年份:
    2014
  • 资助金额:
    $ 72.34万
  • 项目类别:

相似海外基金

EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 72.34万
  • 项目类别:
    Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 72.34万
  • 项目类别:
    Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 72.34万
  • 项目类别:
    Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 72.34万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 72.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 72.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 72.34万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 72.34万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 72.34万
  • 项目类别:
    Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
  • 批准号:
    23H01186
  • 财政年份:
    2023
  • 资助金额:
    $ 72.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了