Risk Models to Improve Long-Term Care Medication Safety
提高长期护理用药安全性的风险模型
基本信息
- 批准号:6780685
- 负责人:
- 金额:$ 1.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-30 至 2004-09-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION: (Provided by the Applicant) Most patient safety improvement occurs incrementally within single institutions. A new method to develop comprehensive statewide risk models that could be exported to large segments of the health care industry is evaluated. Working hypothesis: Sociotechnical probabilistic risk assessment (ST-PRA) can create risk models identifying common medication system and behavioral elements that raise the risk of serious errors and these risk models can be used to design statewide risk reduction programs for nursing and community based care (CBD) long term care facilities. These facilities need robust, well-designed medication systems because they serve a growing and often frail population, administer highly toxic drugs, and must perform to high standards using an unstable and sometimes minimally skilled labor force. Design: Developmental study. Methods: This project uses four tools--process mapping, control system mapping, failure modes and effects analysis (FMEA), and socio-technical probabilistic risk assessment (ST-PRA)--to create two comprehensive probability risk assessment (ST-PRA) models, one for nursing facilities (NFs) and one for CBC (residential care/assisted living) facilities, to identify processes and behaviors that increase the risk of wrong drug, wrong dose, wrong patient medication delivery errors in LTC facilities. The NF risk assessment model is created by focus groups of staff, pharmacists, and physicians from nine randomly selected facilities in a stratified sample of three large, volunteer LTC chains. The CBC process is similar, with nine randomly drawn CBC facilities. Focus groups of CBC residents and their families will be invited to provide input into the CBC model. Appropriate human subjects and privacy protections will be in place. Models are validated in stratified, random samples of nursing and community-based care facilities to determine whether each model is representative of medication delivery systems in the respective types of facilities, using a combination of structured focus groups and direct observation. Recommendations for interventions to address the systems and behavioral risks identified will be made and lessons learned while undertaking this large-scale, multi-facility ST-PRA project will be reported.
描述:(由申请人提供)大多数患者安全性改善在单个机构内逐渐发生。 一种新的方法来开发全面的全州范围内的风险模型,可以出口到大部分的医疗保健行业进行评估。 工作假设:社会技术概率风险评估(ST-PRA)可以创建风险模型,识别常见的药物系统和行为元素,提高严重错误的风险,这些风险模型可以用来设计全州范围内的风险降低计划,护理和社区护理(CBD)长期护理设施。这些设施需要强大的,精心设计的药物系统,因为他们服务于不断增长的,往往是脆弱的人口,管理剧毒药物,必须使用不稳定的,有时是最低技能的劳动力来执行高标准。设计:发展性研究。研究方法:本计画使用四种工具--流程图、控制系统图、失效模式与影响分析(FMEA)、社会技术机率风险评估(ST-PRA)--建立两个综合机率风险评估(ST-PRA)模型,一个用于护理设施(NF),一个用于CBC(住宿护理/辅助生活)设施,以确定增加错误药物,错误剂量风险的过程和行为,LTC机构中的错误患者药物输送错误。NF风险评估模型是由工作人员,药剂师和医生的焦点小组从九个随机选择的设施在三个大型,志愿者LTC链分层样本创建的。CBC过程类似,有9个随机抽取的CBC设施。CBC居民及其家庭的焦点小组将被邀请为CBC模式提供投入。适当的人类受试者和隐私保护将到位。模型进行了验证,分层,随机样本的护理和社区护理设施,以确定每个模型是否是代表药物输送系统在各自类型的设施,使用结构化的焦点小组和直接观察的组合。将提出干预措施的建议,以解决所确定的系统和行为风险,并报告在开展这一大规模、多设施的ST-PRA项目时吸取的经验教训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GRANT K HIGGINSON其他文献
GRANT K HIGGINSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GRANT K HIGGINSON', 18)}}的其他基金
Preventive Health and Health Services Block Grant PPHF 2014
预防性健康和健康服务整笔拨款 PPHF 2014
- 批准号:
8775884 - 财政年份:2013
- 资助金额:
$ 1.65万 - 项目类别:
STATE-BASED CAPACITY BLDG. FOR PREV. OF PRIMARY DISAB. & SECOND. CONDITION
国家能力建设
- 批准号:
7399821 - 财政年份:1994
- 资助金额:
$ 1.65万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 1.65万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10365815 - 财政年份:2022
- 资助金额:
$ 1.65万 - 项目类别:
Leveraging computational models of neurocognition to improve predictions about individual youths' risk for substance use disorders
利用神经认知的计算模型来改进对青少年个体物质使用障碍风险的预测
- 批准号:
10213907 - 财政年份:2021
- 资助金额:
$ 1.65万 - 项目类别:
Leveraging computational models of neurocognition to improve predictions about individual youths' risk for substance use disorders
利用神经认知的计算模型来改进对青少年个体物质使用障碍风险的预测
- 批准号:
10382322 - 财政年份:2021
- 资助金额:
$ 1.65万 - 项目类别:
SCC-PG: Connecting communities with real-time data collection and downscaled climate risk models to improve water quality and sustain salt marshes in the Buzzards Bay Watershed
SCC-PG:通过实时数据收集和缩小规模的气候风险模型将社区连接起来,以改善巴泽兹湾流域的水质并维持盐沼
- 批准号:
2125409 - 财政年份:2021
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
Leveraging computational models of neurocognition to improve predictions about individual youths' risk for substance use disorders
利用神经认知的计算模型来改进对青少年个体物质使用障碍风险的预测
- 批准号:
10609805 - 财政年份:2021
- 资助金额:
$ 1.65万 - 项目类别:
Integrating Social Determinants of Health Into Risk Adjustment Models: An Opportunity to Improve Care Coordination Strategies For Medicaid Beneficiaries
将健康的社会决定因素纳入风险调整模型:改善医疗补助受益人护理协调策略的机会
- 批准号:
9366904 - 财政年份:2017
- 资助金额:
$ 1.65万 - 项目类别:
Integrating Social Determinants of Health Into Risk Adjustment Models: An Opportunity to Improve Care Coordination Strategies For Medicaid Beneficiaries
将健康的社会决定因素纳入风险调整模型:改善医疗补助受益人护理协调策略的机会
- 批准号:
9919325 - 财政年份:2017
- 资助金额:
$ 1.65万 - 项目类别:
Innovative prediction models for risk assessment of preterm birth: a key step to improve care and outcomes
早产风险评估的创新预测模型:改善护理和结果的关键一步
- 批准号:
363409 - 财政年份:2016
- 资助金额:
$ 1.65万 - 项目类别:
Operating Grants
Translating risk models to improve prevention and early diagnosis of cancer in primary care
转化风险模型以改善初级保健中癌症的预防和早期诊断
- 批准号:
nhmrc : 1079842 - 财政年份:2015
- 资助金额:
$ 1.65万 - 项目类别:
Practitioner Fellowships














{{item.name}}会员




