Leveraging computational models of neurocognition to improve predictions about individual youths' risk for substance use disorders
利用神经认知的计算模型来改进对青少年个体物质使用障碍风险的预测
基本信息
- 批准号:10609805
- 负责人:
- 金额:$ 19.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescenceAdolescentAdultAdvanced DevelopmentAgeBehaviorBehavioralBrainBrain regionClinicalClinical InvestigatorCognitionCognitiveCollectionComputer ModelsComputing MethodologiesDataDevelopmentDiagnosisEarly InterventionEnsureEpidemiologyEtiologyExclusionFutureGoalsImage AnalysisIndividualIndividual DifferencesInformaticsKnowledgeLinkLongitudinal StudiesMachine LearningMeasuresMentorshipMethodsMichiganModelingNeurocognitionNeurocognitiveNeurosciencesNeurosciences ResearchOutcomeParameter EstimationPatientsPerformancePersonalityPsychologistPsychopathologyPublic HealthResearchResearch PersonnelResearch Project GrantsResourcesRestRiskRisk FactorsRisk MarkerSamplingSampling StudiesScientistSubstance Use DisorderTestingTrainingValidationWorkYouthaddictionadolescent substance usecareercognitive developmentcognitive functioncomputational neuroscienceconnectomedesigndisorder preventiondisorder riskearly onset substance useemerging adulthoodexternalizing behaviorfeature selectionimprovedindexinginterestlarge datasetslongitudinal datasetmachine learning modelmachine learning predictionmeetingsmodel developmentnervous system disorderneuralneural patterningneurocognitive testneuroimagingnovelpatient orientedpersonalized predictionspredictive modelingpredictive signaturepreventive interventionpsychosocialskillsstatisticssubstance usetheoriestooltraityoung adult
项目摘要
PROJECT SUMMARY/ABSTRACT
This K23 proposal seeks to provide an early-career clinical psychologist and neuroscientist (Dr. Alexander
Weigard) with the mentorship, training, and resources necessary to launch a career as an independent patient-
oriented investigator focused on using advanced computational methods to elucidate etiological mechanisms
of substance use disorders (SUDs) and generate meaningful predictions for patients. The candidate will work
towards this long-term goal through the completion of a research project focused on assessing whether two
advanced computational methods can facilitate the selection of features from neuroscientific data that are
relevant for the individualized prediction of SUD risk in youth. Although extant research in developmental
neuroscience has identified multiple early risk factors that are associated with development of SUD at the
group level, there is currently a dearth of large scale, replicable research in which neurocognitive data are used
to make reliable and generalizable predictions of SUD outcomes for individual youth. In the proposed project,
the candidate will combine his existing expertise in computational models of cognition with new training in
predictive informatics methods to assess whether two advanced computational approaches, a) sequential
sampling models (SSMs) of cognition and b) network neuroscience, can be used to extract features from
longitudinal neurocognitive data that enhance the prediction of youths’ SUD outcomes. The candidate will
conduct extensive analyses with two large data sets (Michigan Longitudinal Study, Adolescent Brain Cognitive
Development Study) and collect pilot data with 60 young adults to accomplish the following research aims: 1)
Quantify the added benefit of SSM parameters for improving the performance of multivariate SUD
prediction models, and 2) Identify the multivariate neural signature of v, an SSM parameter with
promising links to substance use, and determine the potential of this signature for predicting a
precursor to SUD (substance use initiation in mid-adolescence) in ABCD and differentiating young
adults with SUDs in the newly-collected pilot sample. Completion of the following training objectives will
ensure that the candidate can both carry out the proposed project and establish himself as an independent
investigator who is well-equipped to conduct future projects following from this work: 1) Mastering principles
of machine learning model development and testing in longitudinal data sets, 2) building expertise in
using multivariate network neuroscience methods for feature selection and prediction, 3) increasing
clinical and epidemiological knowledge of SUD risk factors beyond neurocognition, and 4) improving
professional skills necessary to become an independent patient-oriented investigator. The proposed
K23 aims to take a crucial step towards the development of advanced computational neuroscience methods
that may ultimately inform SUD prevention efforts by identifying reliable predictors of individuals’ SUD risk, and
to set the candidate up to independently conduct leading edge research in the interest of this larger goal.
项目总结/文摘
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A cognitive process modeling framework for the ABCD study stop-signal task.
- DOI:10.1016/j.dcn.2022.101191
- 发表时间:2023-02
- 期刊:
- 影响因子:4.7
- 作者:Weigard, Alexander;Matzke, Dora;Tanis, Charlotte;Heathcote, Andrew
- 通讯作者:Heathcote, Andrew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Weigard其他文献
Alexander Weigard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Weigard', 18)}}的其他基金
Efficiency of evidence accumulation (EEA) as a higher-order, computationally defined RDoc construct
证据积累效率 (EEA) 作为高阶、计算定义的 RDoc 构造
- 批准号:
10663601 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Leveraging computational models of neurocognition to improve predictions about individual youths' risk for substance use disorders
利用神经认知的计算模型来改进对青少年个体物质使用障碍风险的预测
- 批准号:
10213907 - 财政年份:2021
- 资助金额:
$ 19.66万 - 项目类别:
Leveraging computational models of neurocognition to improve predictions about individual youths' risk for substance use disorders
利用神经认知的计算模型来改进对青少年个体物质使用障碍风险的预测
- 批准号:
10382322 - 财政年份:2021
- 资助金额:
$ 19.66万 - 项目类别:
相似海外基金
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Socio-Emotional Characteristics in Early Childhood and Offending Behaviour in Adolescence
幼儿期的社会情感特征和青春期的犯罪行为
- 批准号:
ES/Z502601/1 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Fellowship
Reasoning about Spatial Relations and Distributions: Supporting STEM Learning in Early Adolescence
空间关系和分布的推理:支持青春期早期的 STEM 学习
- 批准号:
2300937 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Continuing Grant
Cognitive and non-cognitive abilities and career development during adolescence and adult development: from the perspective of genetic and environmental structure
青春期和成人发展期间的认知和非认知能力与职业发展:从遗传和环境结构的角度
- 批准号:
23K02900 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does social motivation in adolescence differentially predict the impact of childhood threat exposure on developing suicidal thoughts and behaviors
青春期的社会动机是否可以差异预测童年威胁暴露对自杀想法和行为的影响
- 批准号:
10785373 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Thalamo-prefrontal circuit maturation during adolescence
丘脑-前额叶回路在青春期成熟
- 批准号:
10585031 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
The Role of Sleep in the Relationships Among Adverse Childhood Experiences, Mental Health Symptoms, and Persistent/Recurrent Pain during Adolescence
睡眠在不良童年经历、心理健康症状和青春期持续/复发性疼痛之间关系中的作用
- 批准号:
10676403 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Interdisciplinary Perspectives on the Politics of Adolescence and Democracy
青少年政治与民主的跨学科视角
- 批准号:
EP/X026825/1 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Research Grant
Harnessing digital data to study 21st-century adolescence
利用数字数据研究 21 世纪青春期
- 批准号:
MR/X028801/1 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Research Grant














{{item.name}}会员




