STRUCTURE-FUNCTION OF THE CARDIAC SODIUM CHANNEL
心脏钠通道的结构与功能
基本信息
- 批准号:6651134
- 负责人:
- 金额:$ 33.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-09-29 至 2005-05-14
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (the applicant's description verbatim): The long-term purpose of
this project is to understand cardiac Na+ channel function at the molecular
level, and to use the understanding to develop strategies for control of lethal
arrhythmias. This project has three interdependent goals for the next five
years: 1) resolving the molecular configuration of the Na+ channel permeation
path/selectivity region, including the sites for local anesthetic drug binding,
2) examining the roles of charged vestibule residues in permeation and
selectivity, and 3) determining the functional abnormalities resulting from
naturally occurring channel mutants, especially alpha-subunit interactions. The
Na+ channel is a major participant in most serious or lethal arrhythmias, and
it is the target of some of our most powerful antiarrhythmic drugs.
Considerable progress has been made in identifying the molecular structure of
the outer vestibule (outer third of the permeation path) by effects of point
mutations on permeation and selectivity and by determining the complimentary
surface for binding of the pore-blocking toxins. Our unifying structural
hypothesis is that the Na+ channel is related through evolution to the
structurally determined KcsA bacterial channel, and that it spore motif of a
helix teepee and a selectivity motif of helix-turn-strand is applicable to the
Na+ channel. We propose to extend the complimentary interaction surface for
outer vestibule toxins to identify the structure of the "turrets" in the outer
path, perhaps also attempting to resolve the isoform selectivity of u-conotoxin
in the process. These important carboxyls in the outer vestibule will be
examined by mutation and pH titration for their contribution to dehydration of
the permeating ions. The residues facing the inner pore will be identified by
sequential mutation of the residues to cysteine, with access determined by
methanesulfonate derivative interaction. Their roles in local anesthetic drug
binding will be determined, in order to find all of the molecular parts of the
drug binding site. State-dependent access of these residues will be examined to
determine the changes in the site with channel gating. Each experimental step
is developed based on the best molecular model we can develop, and in turn the
model is improved as new experimental information is obtained in these
experiments or published by others.
描述(申请人的逐字描述):长期目的
本课题旨在从分子水平上了解心肌钠离子通道功能
水平,并利用这一理解来制定控制致命疾病的战略
心律不齐。该项目在接下来的五年中有三个相互依赖的目标
年:1)解决Na+通道渗透的分子构型
路径/选择性区域,包括局部麻醉剂药物结合部位,
2)检查带电前庭残留物在渗透和
选择性,以及3)确定由以下原因引起的功能异常
自然产生的通道突变,特别是阿尔法亚单位相互作用。这个
Na+通道是大多数严重或致命性心律失常的主要参与者,
它是我们一些最有效的抗心律失常药物的靶点。
在鉴定其分子结构方面已经取得了相当大的进展
外前庭(外三分之一的渗透路径)受穴位的影响
关于渗透性和选择性的突变以及通过确定补充性
用于结合堵塞毛孔的毒素的表面。我们统一的结构
假设钠离子通道在进化过程中与
结构上确定了KCSA细菌通道,它的孢子模体是一种
螺旋被盖和螺旋-转向链的选择性基序适用于
Na+通道。我们建议将互补交互曲面扩展为
外部前庭毒素识别外部“炮塔”的结构
PATH,也许也试图解决U-芋螺毒素的异构体选择性
在这个过程中。这些位于外前庭的重要羧基将是
通过突变和pH滴定检测它们对脱水率的贡献
渗透的离子。朝向内孔的残留物将通过以下方式识别
残基顺序突变为半胱氨酸,其访问权限由
甲烷磺酸盐衍生物相互作用。它们在局麻药中的作用
结合将被确定,以便找到所有分子部分
药物结合部位。国家对这些残留物的依赖访问将被审查为
确定使用通道门控的站点中的更改。每一个实验步骤
是基于我们可以开发的最好的分子模型开发的,反过来
随着新的实验信息的获得,模型得到了改进
实验或由他人发表。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HARRY A FOZZARD其他文献
HARRY A FOZZARD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HARRY A FOZZARD', 18)}}的其他基金
相似海外基金
Bridging the Gap: Next-Gen Tools for Accurate Prediction of Disordered Protein Binding Sites
弥合差距:准确预测无序蛋白质结合位点的下一代工具
- 批准号:
24K15172 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of protein crystal templates with multiple binding sites for tracking metal complex reactions.
设计具有多个结合位点的蛋白质晶体模板,用于跟踪金属络合物反应。
- 批准号:
23K04928 - 财政年份:2023
- 资助金额:
$ 33.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
- 批准号:
10744934 - 财政年份:2023
- 资助金额:
$ 33.47万 - 项目类别:
Computational methods to identify small molecule RNA binding sites
识别小分子 RNA 结合位点的计算方法
- 批准号:
573688-2022 - 财政年份:2022
- 资助金额:
$ 33.47万 - 项目类别:
University Undergraduate Student Research Awards
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
- 批准号:
10704557 - 财政年份:2022
- 资助金额:
$ 33.47万 - 项目类别:
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
- 批准号:
10537846 - 财政年份:2022
- 资助金额:
$ 33.47万 - 项目类别:
Identifying new types of inhibitors in quinone binding sites in photosynthetic enzymes
鉴定光合酶醌结合位点的新型抑制剂
- 批准号:
2753921 - 财政年份:2022
- 资助金额:
$ 33.47万 - 项目类别:
Studentship
Development of broad nanovaccines targeting diverse coronavirus receptor-binding sites
开发针对不同冠状病毒受体结合位点的广泛纳米疫苗
- 批准号:
10328140 - 财政年份:2022
- 资助金额:
$ 33.47万 - 项目类别:
Exploiting Water Network Perturbations in Protein Binding Sites
利用蛋白质结合位点的水网络扰动
- 批准号:
10621368 - 财政年份:2021
- 资助金额:
$ 33.47万 - 项目类别:
SBIR Phase I: Nonlinear optical method for identifying protein-ligand binding sites
SBIR 第一阶段:识别蛋白质-配体结合位点的非线性光学方法
- 批准号:
2111821 - 财政年份:2021
- 资助金额:
$ 33.47万 - 项目类别:
Standard Grant














{{item.name}}会员




