Cell death proteins as inflammatory mediators in sepsis
细胞死亡蛋白作为脓毒症炎症介质
基本信息
- 批准号:10715338
- 负责人:
- 金额:$ 39.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AnimalsAntibioticsApoptosisBiological AssayCell DeathCell Death Signaling ProcessCell Fate ControlCellsClinicalCritical IllnessDataDiseaseHealthcare SystemsHomeostasisHost DefenseHumanHuman Cell LineImmuneImmune responseIn VitroInfectionInflammationInflammation MediatorsInflammatoryInvadedKnowledgeMeasuresMedicareModernizationOrgan failurePathway interactionsPatientsPersonsProcessProteinsPublic HealthSamplingSepsisSignal PathwayStimulusSupportive careTechniquesTissuesUnited Statesbeneficiarycostexperimental studyin vivoinsightnovel therapeutic interventionpathogenprogramsresponseseptictargeted treatmenttherapeutic target
项目摘要
Sepsis is a significant public health issue in the United States, killing 300,000 people each year and generating
over $60 billion in costs to Medicare beneficiaries. Because we do not fully understand how infection triggers
the inflammatory dysregulation seen in sepsis, no targeted therapies for sepsis are clinically available. Patient
treatments are limited to antibiotics directed against infection and supportive care for organ failure. Cell death
signaling pathways, the mechanisms that control cell fate in response to environmental stimuli, are distributed
throughout mammalian tissue and are a foundational component of host defense against invading pathogens.
During infection, these pathways activate immune responses, clear infected cells, incite tissue damage, and
promote inflammation. This proposal seeks to understand how cell death signaling pathways contribute to the
inflammatory dysregulation that typifies sepsis. This will be done by assaying activity of these pathways under
conditions of infection in both immune and non-immune tissue. Samples collected from septic human patients
will be analyzed for cell death signaling pathway activity and data will be correlated with clinical variables.
Insights gained from these observations will be used to direct mechanistic studies aimed at determining how
these pathways are regulated during sepsis. Both in vitro and in vivo techniques will be utilized when
experiments cannot be performed in human patients. Cultured human cell lines will be infected and analyzed in
vitro, and the effects of cell death signaling pathway inhibition will be measured in septic animals. Results from
this proposal will better define the mechanisms through which infection unleashes dysregulated inflammation in
sepsis and offer a greater understanding of how core cellular homeostasis and defense machinery functions
during critical illness. This knowledge stands to produce novel therapeutic strategies and targets for a deadly
disease process that continues to put tremendous strain on modern healthcare systems.
脓毒症是美国的一个重大公共卫生问题,每年造成30万人死亡,并产生
超过600亿美元的成本给医疗保险受益人。因为我们还不完全了解感染是如何
脓毒症中所见的炎症失调,临床上没有针对脓毒症的靶向治疗。患者
治疗仅限于针对感染的抗生素和针对器官衰竭的支持性护理。细胞死亡
信号通路,控制细胞命运的机制,对环境刺激的反应,分布在
在整个哺乳动物组织中,是宿主防御入侵病原体的基本组成部分。
在感染过程中,这些途径激活免疫反应,清除感染细胞,引发组织损伤,
促进炎症。该提案旨在了解细胞死亡信号通路如何有助于
典型的脓毒症的炎症失调。这将通过测定这些途径的活性来完成,
免疫和非免疫组织中的感染状况。从脓毒症人类患者中采集的样本
将分析细胞死亡信号通路活性,数据将与临床变量相关。
从这些观察中获得的见解将用于指导旨在确定
这些途径在脓毒症期间受到调节。在以下情况下,将使用体外和体内技术:
实验不能在人类患者身上进行。培养的人细胞系将被感染并在
体外,并且将在脓毒症动物中测量细胞死亡信号传导途径抑制的效果。结果
这一建议将更好地定义感染释放失调炎症的机制,
脓毒症,并提供更好的理解如何核心细胞稳态和防御机制的功能
在重病期间。这些知识将为致命的疾病产生新的治疗策略和目标。
疾病进程继续给现代医疗保健系统带来巨大压力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Daniel Lyons其他文献
John Daniel Lyons的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 39.13万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 39.13万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 39.13万 - 项目类别:
Studentship