Trans-Golgi Network Remodeling by Microbial Factors
微生物因素对跨高尔基体网络的重塑
基本信息
- 批准号:10714609
- 负责人:
- 金额:$ 41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAntibioticsAutoimmune DiseasesBacteriaCell physiologyDissectionEukaryotaEventFoundationsFutureGenesGoalsGramicidinGuanosine Triphosphate PhosphohydrolasesHealthHumanInflammasomeInflammatoryKnowledgeLigandsMaintenanceMalignant NeoplasmsMedial GolgiMetabolic DiseasesMicrobeModificationMolecularMorphologyNatureNerve DegenerationNigericinOrganellesOrganismPathway interactionsPeptidesPost-Translational Protein ProcessingProtein BiosynthesisProtein FamilyProteinsRoleSignal TransductionSortingStimulusStructureTherapeuticToxinVesicleVirusYeastscytokinegenetic manipulationglycosylationgolginhuman diseaseinnovationinsightmicrobialnovelrational designscreeningsmall moleculetooltrans-Golgi Network
项目摘要
PROJECT SUMMARY
Eukaryotic trans-Golgi network (TGN) has been extensively studied for its role as the major sorting
compartment and the center for terminal processing and modifications of newly synthesized proteins. While the
TGN is known for its dynamic nature associated with the constant flux of traffic, whether its structures can be
altered in microbe-eukaryote interactions and the subsequent consequences have remained elusive until
recently. Our previous study has discovered that multiple microbial factors (e.g., bacterial antibiotics nigericin
and gramicidin) are able to induce the disassembly of the TGN into vesicles. These dispersed TGN vesicles
then serve as a signaling platform for the assembly and activation of the NLRP3 inflammasome. NLRP3
pathway induces proinflammatory cytokines, and its hyperactivation has been closely associated with a wide
variety of human diseases, including autoimmune diseases, cancers, neurodegeneration, and metabolic
disorders. Importantly, these stimuli do not affect the closely associated cis- and medial-Golgi, indicating that it
is a tightly regulated reorganization event specifically targeting the TGN. Dissection of the detailed cellular and
molecular basis has been challenging because these stimuli are either small molecules or nonribosomal
peptides not encoded by genes. Recently, we have discovered two groups of microbial factors, i.e., pore-
forming toxins from bacteria and viroporins from viruses, as highly specific TGN-dispersing stimuli. The protein
nature of these stimuli has allowed us to easily track their translocation and genetically manipulate them to
study the effects on TGN remodeling. In addition, we found evidence that TGN remodeling is not only
important for inflammatory signaling, but also results in altered glycosylations. The ultimate goal of this MIRA
R35 proposal is to use these protein microbial factors as tools to study the detailed mechanisms and functions
of TGN remodeling. We will pursue three major questions: (1) What are the regions/motifs that are critical for
these stimuli to remodel the TGN? Our identification of novel TGN dispersion peptide motifs will greatly
facilitate future screening and identification of other TGN dispersion ligands in both microbes and eukaryotic
organisms. (2) What eukaryotic factors (e.g., TGN-localized GTPases and golgin family proteins) are involved
in TGN remodeling, and how conserved are their functions in other eukaryotic species such as yeast? (3) How
does TGN remodeling affect various eukaryotic cellular processes, including inflammatory signaling and
proteins modifications? Our proposed studies will help fill a critical knowledge gap on the mechanisms and
functions of TGN remodeling, as well as providing invaluable insights into the rational design of innovative
therapeutics to mitigate a wide range of human health problems.
项目总结
真核生物的反式高尔基体网络(TGN)作为主要的分选机制而受到广泛的研究
隔室和新合成蛋白质的末端加工和修饰中心。而当
TGN以其与恒定流量相关的动态性质而闻名,无论其结构是否可以
微生物-真核生物相互作用的改变和随后的后果仍然难以捉摸,直到
最近。我们之前的研究发现,多种微生物因素(如细菌抗生素黑素)
和Graicidin)能够诱导TGN分解成囊泡。这些分散的TGN囊泡
然后作为组装和激活NLRP3炎症体的信号平台。NLRP3
途径诱导促炎细胞因子,其过度激活与广泛的
多种人类疾病,包括自身免疫性疾病、癌症、神经变性和新陈代谢
精神错乱。重要的是,这些刺激并不影响密切相关的顺行和内侧高尔基体,这表明它
是一个受到严格监管的重组活动,专门针对TGN。解剖了详细的细胞和
分子基础一直具有挑战性,因为这些刺激要么是小分子,要么是非核糖体
不是由基因编码的多肽。最近,我们发现了两组微生物因子,即毛孔-
从细菌中形成毒素,从病毒中形成病毒孢子蛋白,作为高度特异性的TGN分散刺激。这种蛋白质
这些刺激的性质使我们能够很容易地追踪它们的易位,并从基因上操纵它们
研究其对TGN重塑的影响。此外,我们发现有证据表明,TGN重塑不仅
对炎症信号很重要,但也会导致糖基化改变。这一Mira的最终目标是
R35的建议是利用这些蛋白质微生物因子作为工具来研究其详细的机制和功能
TGN的重塑。我们将探讨三个主要问题:(1)哪些区域/主题对
这些刺激来重塑TGN?我们对新的TGN分散肽基序的鉴定将极大地
便于将来在微生物和真核生物中筛选和鉴定其他TGN分散配体
有机体。(2)什么是真核因子(如TGN定位的GTP酶和Golgin家族蛋白)?
在TGN重塑中,它们在其他真核生物如酵母中的功能是如何保守的?(3)如何
TGN重塑是否影响真核细胞的各种过程,包括炎症信号和
蛋白质修饰?我们提议的研究将有助于填补有关机制和
TGN重塑的功能,以及为创新的合理设计提供宝贵的见解
治疗,以缓解广泛的人类健康问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jueqi Chen其他文献
Jueqi Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jueqi Chen', 18)}}的其他基金
An Engineered CRISPR System for Boosting Tumor Immunogenicity.
用于增强肿瘤免疫原性的工程 CRISPR 系统。
- 批准号:
10354968 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
An Engineered CRISPR System for Boosting Tumor Immunogenicity.
用于增强肿瘤免疫原性的工程 CRISPR 系统。
- 批准号:
10674490 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
An Engineered CRISPR System for Boosting Tumor Immunogenicity.
用于增强肿瘤免疫原性的工程 CRISPR 系统。
- 批准号:
10493269 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Studentship














{{item.name}}会员




