Single-cell immune landscape in the oral dysplasia's malignant transformation
口腔异型增生恶性转化中的单细胞免疫景观
基本信息
- 批准号:10714554
- 负责人:
- 金额:$ 17.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:ArchivesAtlasesBiopsyCell CountCellsClinicalCollaborationsCytometryDataDentalDental StudentsDevelopmentDiagnosisDysplasiaElasticityFormalinGoalsHigh grade dysplasiaHistologicHistopathologic GradeHumanImageImaging technologyImmuneImmunoassayImmunofluorescence ImmunologicLesionMalignant - descriptorMalignant NeoplasmsMicroscopyMild DysplasiaMyelogenousMyeloid-derived suppressor cellsNatural ImmunityNatureNeighborhoodsOralOral PathologyParaffin EmbeddingPatientsPhagocytesPhenotypePlayPrognosisPrognostic MarkerProliferatingProteinsRecurrenceResearchRiskRisk FactorsRoleSamplingSchool DentistrySeveritiesSignal TransductionStainsSurfaceSystemTongueTranslational ResearchTumor-associated macrophagesUniversitiesbioinformatics pipelinebiomarker identificationcancer invasivenesshigh dimensionalityimmune cell infiltrateimprovedinnovationmachine learning algorithmmachine learning predictionmolecular markermortalitymouse modelmouth squamous cell carcinomamultidisciplinarymultiplexed imagingneighborhood associationnovelnovel therapeuticsoral dysplasiapre-doctoralpredictive modelingpremalignantstudent participationtumortumor-immune system interactions
项目摘要
About 7.9-27.6% of oral dysplasia, a premalignant lesion, transit to the invasive oral cavity squamous cell
carcinoma (OCSCC). Prognostic biomarkers are critically needed to determine patients with oral
dysplastic lesions at risk for malignant transformation and to guide the targeted development of novel
therapies. Our goal is to establish a single-cell atlas of premalignant immune microenvironment (PRIME)
in oral dysplasia and to identify immune features that predict the malignant transformation to OCSCC.
We propose an innovative approach that combines high-dimensional imaging mass cytometry (IMC) and
machine learning predictive modeling (iEN) to analyze a total of ~200 Formalin-Fixed Paraffin-Embedded
(FFPE) patient tongue biopsies from the Oral Pathology Archive at the University of the Pacific (UOP),
Arthur A. Dugoni School of Dentistry. IMC is a new multiplex imaging technology which combines high-
dimensional mass cytometry with microscopy. Immune Elastic Net (iEN) is a machine learning algorithm
specifically developing for the analysis of high-dimensional mass cytometry data. We plan to identify
immune features that differentiate oral dysplasia severity (Aim 1) and predict OCSCC malignant
transformation (Aim 2). In addition, we will analyze the iEN-selected immune features at UOP Han’s lab
by conducting multiplex immunofluorescence (mIF) staining on the whole sections (Aim 1&2) to validate
and generalize the IMC findings. The proposed research will establish immune landscape in oral
dysplasia and identify biomarkers to predict the malignant transformation. It also provides an opportunity
for predental or dental students participating in translational research and collaborating with
multidisciplinary team to identify biomarkers to improve oral pathology diagnosis.
约 7.9-27.6% 的口腔发育不良(一种癌前病变)会转移至侵袭性口腔鳞状细胞
癌(OCSCC)。迫切需要预后生物标志物来确定患有口腔疾病的患者
具有恶变风险的发育不良病变,并指导新型药物的靶向开发
疗法。我们的目标是建立癌前免疫微环境的单细胞图谱(PRIME)
口腔异型增生并确定预测 OCSCC 恶变的免疫特征。
我们提出了一种创新方法,将高维成像质谱流式细胞术 (IMC) 与
机器学习预测模型 (iEN) 可分析总共约 200 个福尔马林固定石蜡包埋的样本
(FFPE) 来自太平洋大学 (UOP) 口腔病理学档案馆的患者舌活检,
亚瑟·A·杜戈尼牙科学院。 IMC 是一种新型多重成像技术,结合了高
显微镜下的三维质量细胞计数。免疫弹性网络(iEN)是一种机器学习算法
专门为分析高维质谱流式数据而开发。我们计划确定
区分口腔发育不良严重程度(目标 1)并预测 OCSCC 恶性的免疫特征
转型(目标 2)。此外,我们将在 UOP Han 实验室分析 iEN 选择的免疫特征
通过对整个切片进行多重免疫荧光 (mIF) 染色(目标 1&2)来验证
并概括 IMC 的发现。拟议的研究将建立口腔免疫景观
发育不良并识别生物标志物来预测恶性转化。也提供了一个机会
适合参加转化研究并与之合作的牙医预科或牙科学生
多学科团队识别生物标志物以改善口腔病理诊断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoyuan Han其他文献
Xiaoyuan Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
BrainMaps - a unified web platform for novel model organism brain atlases
BrainMaps - 新型模型生物脑图谱的统一网络平台
- 批准号:
23KF0076 - 财政年份:2023
- 资助金额:
$ 17.79万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Sexual dimorphic cell type and connectivity atlases of the aging and AD mouse brains
衰老和 AD 小鼠大脑的性二态性细胞类型和连接图谱
- 批准号:
10740308 - 财政年份:2023
- 资助金额:
$ 17.79万 - 项目类别:
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
- 批准号:
10818803 - 财政年份:2023
- 资助金额:
$ 17.79万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10743857 - 财政年份:2022
- 资助金额:
$ 17.79万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10558629 - 财政年份:2022
- 资助金额:
$ 17.79万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10508739 - 财政年份:2022
- 资助金额:
$ 17.79万 - 项目类别:
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
- 批准号:
RGPIN-2018-05283 - 财政年份:2022
- 资助金额:
$ 17.79万 - 项目类别:
Discovery Grants Program - Individual
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10570256 - 财政年份:2022
- 资助金额:
$ 17.79万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10364874 - 财政年份:2022
- 资助金额:
$ 17.79万 - 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10467697 - 财政年份:2022
- 资助金额:
$ 17.79万 - 项目类别:














{{item.name}}会员




