Semiparametric Models for Large Scale-Biomedical Data
大规模生物医学数据的半参数模型
基本信息
- 批准号:7171900
- 负责人:
- 金额:$ 18.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-02-01 至 2010-01-31
- 项目状态:已结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeAddressAffectBiologicalBiological ProcessCell physiologyCellsChinaClassificationCohort StudiesComputer softwareConditionDNA analysisDataData SetDiagnosisDiseaseDrug DesignGene ExpressionGene ProteinsGenesGoalsHarvestHealthHumanIndividualInheritedInvestigationLongitudinal StudiesMalignant NeoplasmsMedicalMethodologyMethodsMicro Array DataMicroarray AnalysisMigration Inhibitory FactorModelingMolecularMolecular ProfilingNeuroblastomaNutrition SurveysOncogenic VirusesPatternPharmaceutical PreparationsPharmacologic SubstanceProteomicsRateRisk FactorsSARS coronavirusScientistStatistical MethodsStructureSystematic BiasTechniquesTherapeuticTimeVariantVirus Diseasesdisease classificationimprovedinnovationinnovative technologiesnovelnovel strategiesoutcome forecastphenylpyruvate tautomeraseprotein expressionresearch studyresponsesimulationtooltumor
项目摘要
DESCRIPTION (provided by applicant): This.aim of this proposal is to develop novel statistical methodology to address issues in the analysis of large scale data from biomedical studies, especially the studies of tumors and virus diseases. The problems arising from the analysis of DNA micorarray, proteomic and longitudinal data will be carefully investigated. The proposal focuses on developing innovative semiparametric techniques for removing systematic biases in microarray experiments, selecting significantly expressed patterns of genes and proteins at different time points and under different experimental conditions, and efficiently assessing the covariate effects and predicting individual response trajectory for longitudinal studies. The strength and weakness of each proposed method will be critically scrutinized via theoretical investigations and simulation studies. Related software will be developed. Data sets from ongoing biological studies on cancer and virus diseases will be analyzed by using the newly developed statistical methods. This study allows biologists to more effectively remove the impact of experimental variations inherited in microarray experiments and permits biologists to reveal more meaningful scientific results with lower false discovery rates. It provides cutting-edge tools for biologists to understand biological processes, molecular functions and cellular activities. It introduces new tools for medical scientists to unveil how the risk factors affect individual disease over time. These will result in improved disease classification, diagnosis, prognosis, and drug design, among other pharmaceutical, therapeutic and medical goals.
描述(由申请人提供):本提案的目的是开发新的统计方法,以解决生物医学研究(特别是肿瘤和病毒性疾病研究)大规模数据分析中的问题。从DNA微阵列,蛋白质组学和纵向数据的分析所产生的问题将仔细研究。该提案的重点是开发创新的半参数技术,以消除微阵列实验中的系统性偏倚,选择在不同时间点和不同实验条件下显著表达的基因和蛋白质模式,并有效地评估协变量效应和预测纵向研究的个体响应轨迹。每种方法的优点和缺点将通过理论研究和模拟研究进行严格审查。将开发相关软件。正在进行的癌症和病毒性疾病生物学研究的数据集将使用新开发的统计方法进行分析。这项研究使生物学家能够更有效地消除微阵列实验中遗传的实验变异的影响,并使生物学家能够以更低的错误发现率揭示更有意义的科学结果。它为生物学家了解生物过程,分子功能和细胞活动提供了尖端工具。它为医学科学家提供了新的工具,以揭示风险因素如何随着时间的推移影响个体疾病。这些将导致改善疾病分类、诊断、预后和药物设计,以及其他制药、治疗和医疗目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianqing Fan其他文献
Jianqing Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianqing Fan', 18)}}的其他基金
Quantitative Methods for Genome-wide Analysis of Macrophage Activation by ESCs
ESC 巨噬细胞激活的全基因组定量分析方法
- 批准号:
8476238 - 财政年份:2011
- 资助金额:
$ 18.56万 - 项目类别:
Quantitative Methods for Genome-wide Analysis of Macrophage Activation by ESCs
ESC 巨噬细胞激活的全基因组定量分析方法
- 批准号:
8668101 - 财政年份:2011
- 资助金额:
$ 18.56万 - 项目类别:
Quantitative Methods for Genome-wide Analysis of Macrophage Activation by ESCs
ESC 巨噬细胞激活的全基因组定量分析方法
- 批准号:
8244572 - 财政年份:2011
- 资助金额:
$ 18.56万 - 项目类别:
Quantitative Methods for Genome-wide Analysis of Macrophage Activation by ESCs
ESC 巨噬细胞激活的全基因组定量分析方法
- 批准号:
8325576 - 财政年份:2011
- 资助金额:
$ 18.56万 - 项目类别:
Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
- 批准号:
8423354 - 财政年份:2006
- 资助金额:
$ 18.56万 - 项目类别:
Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
- 批准号:
8627273 - 财政年份:2006
- 资助金额:
$ 18.56万 - 项目类别:
Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
- 批准号:
9900790 - 财政年份:2006
- 资助金额:
$ 18.56万 - 项目类别:
Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
- 批准号:
8225157 - 财政年份:2006
- 资助金额:
$ 18.56万 - 项目类别:
Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
- 批准号:
7714616 - 财政年份:2006
- 资助金额:
$ 18.56万 - 项目类别:
Semiparametric Models for Large Scale-Biomedical Data
大规模生物医学数据的半参数模型
- 批准号:
7570076 - 财政年份:2006
- 资助金额:
$ 18.56万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 18.56万 - 项目类别:
Research Grant














{{item.name}}会员




