Semiparametric Models for Large Scale-Biomedical Data
大规模生物医学数据的半参数模型
基本信息
- 批准号:7570076
- 负责人:
- 金额:$ 18.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-02-01 至 2010-01-31
- 项目状态:已结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeAddressAffectBiological ProcessCell physiologyCellsChinaClassificationCohort StudiesComputer softwareDataData SetDiagnosisDiseaseDrug DesignGene ExpressionGene ProteinsGenesGoalsHarvestHealthHumanIndividualInheritedInvestigationLongitudinal StudiesMalignant NeoplasmsMedicalMethodologyMethodsMicro Array DataMicroarray AnalysisMigration Inhibitory FactorModelingMolecularMolecular ProfilingNeuroblastomaNutrition SurveysOncogenic VirusesPatternPharmaceutical PreparationsPharmacologic SubstanceProteomicsRisk FactorsSARS coronavirusScientistStatistical MethodsStructureSystematic BiasTechniquesTherapeuticTimeVariantVirus Diseasesdisease classificationimprovedinnovationinnovative technologiesnovelnovel strategiesoutcome forecastphenylpyruvate tautomeraseprotein expressionresearch studyresponsesimulationtooltumor
项目摘要
DESCRIPTION (provided by applicant): This proposal develops novel statistical methods to select a small group of molecules from high-throughput data such as microarray and proteomic data from cancer research. The challenge of the study is the ultrahigh dimensionality inherited in these studies, particular when gene-gene interactions are introduced. The ultrahigh dimensionality has large impact on statistical computation, methodological developments, and theoretical studies. The challenge will be dealt by using the proposed novel independence screening methods, which also addresses the computational demand and stability, and the issues of stochastic error accumulation in ultra-high dimensional statistical inferences. An iterative independence screening method is introduced to find hidden signature genes that are marginally unimportant but jointly extremely important to the clinical outcomes. It also enables us to eliminate redundant molecules that are marginally highly but jointly weakly associated with clinical outcomes. With number of features surely reduced to a manageable level, penalized pseudo-likelihood methods will be introduced to further select relevant genes. In addition, methods for finding synergetic groups of molecules are introduced. The idea of independence screening and its iterated version will be applied to various statistical problems from the analysis of high throughput data, ranging from ultrahigh dimensional regression and classification to the analysis of survival time, estimation of genewide variance, and normalization of microarrays. The efficacy of the proposed methods will be evaluated via asymptotic theory and simulation studies. Data sets from on-going biomedical studies on cancer such as breast cancer, multiple myeloma, neuroblastoma, lung tumor, and liver carcigogen will be critically analyzed using the newly developed statistical and bioinformatic tools. PUBLIC HEALTH RELEVANCE: Statistical Methods for Ultrahigh-dimensional Biomedical Data PI: Jianqing Fan This proposal develops novel statistical and bioinformatic tools for finding genes and proteins that are associated with clinical outcomes. Data sets from on-going biomedical studies on cancer such as breast cancer, multiple myeloma, neuroblastoma, lung tumor, and liver carcinogen will be critically analyzed using the newly developed statistical and bioinformatic tools. The research findings will have strong impact on understanding molecular mechanisms of cancer and developing therapeutic targets.
描述(由申请人提供):该提案开发了新的统计方法,以从高通量数据(如来自癌症研究的微阵列和蛋白质组数据)中选择一小组分子。这项研究的挑战是这些研究中继承的非线性维度,特别是当引入基因-基因相互作用时。该维度对统计计算、方法学发展和理论研究都有很大的影响。挑战将通过使用所提出的新颖的独立筛选方法来处理,该方法还解决了计算需求和稳定性,以及超高维统计推断中的随机误差积累问题。一个迭代的独立筛选方法被引入到寻找隐藏的签名基因,是微不足道的,但共同非常重要的临床结果。它还使我们能够消除冗余分子,这些分子与临床结果的相关性很小,但联合很弱。随着特征的数量减少到一个可管理的水平,惩罚伪似然方法将被引入到进一步选择相关基因。此外,还介绍了寻找分子协同基团的方法。独立筛选及其迭代版本的想法将被应用于各种统计问题,从高通量数据的分析,从多维回归和分类到生存时间的分析,全基因方差的估计和微阵列的归一化。所提出的方法的有效性将通过渐近理论和模拟研究进行评估。正在进行的癌症生物医学研究的数据集,如乳腺癌,多发性骨髓瘤,神经母细胞瘤,肺肿瘤和肝癌将使用新开发的统计和生物信息学工具进行批判性分析。公共卫生关系:超高维生物医学数据的统计方法PI:Jianqing Fan该提案开发了新的统计和生物信息学工具,用于发现与临床结果相关的基因和蛋白质。正在进行的癌症生物医学研究的数据集,如乳腺癌,多发性骨髓瘤,神经母细胞瘤,肺肿瘤和肝癌将使用新开发的统计和生物信息学工具进行批判性分析。研究结果将对理解癌症的分子机制和开发治疗靶点产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianqing Fan其他文献
Jianqing Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianqing Fan', 18)}}的其他基金
Quantitative Methods for Genome-wide Analysis of Macrophage Activation by ESCs
ESC 巨噬细胞激活的全基因组定量分析方法
- 批准号:
8476238 - 财政年份:2011
- 资助金额:
$ 18.76万 - 项目类别:
Quantitative Methods for Genome-wide Analysis of Macrophage Activation by ESCs
ESC 巨噬细胞激活的全基因组定量分析方法
- 批准号:
8668101 - 财政年份:2011
- 资助金额:
$ 18.76万 - 项目类别:
Quantitative Methods for Genome-wide Analysis of Macrophage Activation by ESCs
ESC 巨噬细胞激活的全基因组定量分析方法
- 批准号:
8244572 - 财政年份:2011
- 资助金额:
$ 18.76万 - 项目类别:
Quantitative Methods for Genome-wide Analysis of Macrophage Activation by ESCs
ESC 巨噬细胞激活的全基因组定量分析方法
- 批准号:
8325576 - 财政年份:2011
- 资助金额:
$ 18.76万 - 项目类别:
Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
- 批准号:
8423354 - 财政年份:2006
- 资助金额:
$ 18.76万 - 项目类别:
Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
- 批准号:
8225157 - 财政年份:2006
- 资助金额:
$ 18.76万 - 项目类别:
Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
- 批准号:
8627273 - 财政年份:2006
- 资助金额:
$ 18.76万 - 项目类别:
Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
- 批准号:
9900790 - 财政年份:2006
- 资助金额:
$ 18.76万 - 项目类别:
Semiparametric Models for Large Scale-Biomedical Data
大规模生物医学数据的半参数模型
- 批准号:
7171900 - 财政年份:2006
- 资助金额:
$ 18.76万 - 项目类别:
Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
- 批准号:
7714616 - 财政年份:2006
- 资助金额:
$ 18.76万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 18.76万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 18.76万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 18.76万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 18.76万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 18.76万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 18.76万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 18.76万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 18.76万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 18.76万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 18.76万 - 项目类别:
Research Grant














{{item.name}}会员




