Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
基本信息
- 批准号:7714616
- 负责人:
- 金额:$ 26.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-02-01 至 2014-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBioinformaticsCarcinogensCellsClassificationClinicalCluster AnalysisComputer softwareCox Proportional Hazards ModelsDataData SetDevelopmentGene ProteinsGenesHarvestHumanInheritedInvestigationLinear ModelsLiverLung NeoplasmsMalignant NeoplasmsMethodsMigration Inhibitory FactorModelingMolecularMultiple MyelomaNecrosisNeuroblastomaOutcomePharmaceutical PreparationsProteinsProteomicsQuality ControlRegression AnalysisResearchSamplingScreening procedureStatistical MethodsSurvival AnalysisTechniquesTheoretical StudiesTherapeuticTimeToxicogenomicsanticancer researchgene interactionhigh throughput analysisinnovative technologiesmalignant breast neoplasmmembernovelnovel strategiesphenylpyruvate tautomeraseprotein expressionpublic health relevancesimulationtheoriestherapeutic targettool
项目摘要
DESCRIPTION (provided by applicant): This proposal develops novel statistical methods to select a small group of molecules from high-throughput data such as microarray and proteomic data from cancer research. The challenge of the study is the ultrahigh dimensionality inherited in these studies, particular when gene-gene interactions are introduced. The ultrahigh dimensionality has large impact on statistical computation, methodological developments, and theoretical studies. The challenge will be dealt by using the proposed novel independence screening methods, which also addresses the computational demand and stability, and the issues of stochastic error accumulation in ultra-high dimensional statistical inferences. An iterative independence screening method is introduced to find hidden signature genes that are marginally unimportant but jointly extremely important to the clinical outcomes. It also enables us to eliminate redundant molecules that are marginally highly but jointly weakly associated with clinical outcomes. With number of features surely reduced to a manageable level, penalized pseudo-likelihood methods will be introduced to further select relevant genes. In addition, methods for finding synergetic groups of molecules are introduced. The idea of independence screening and its iterated version will be applied to various statistical problems from the analysis of high throughput data, ranging from ultrahigh dimensional regression and classification to the analysis of survival time, estimation of genewide variance, and normalization of microarrays. The efficacy of the proposed methods will be evaluated via asymptotic theory and simulation studies. Data sets from on-going biomedical studies on cancer such as breast cancer, multiple myeloma, neuroblastoma, lung tumor, and liver carcigogen will be critically analyzed using the newly developed statistical and bioinformatic tools. PUBLIC HEALTH RELEVANCE: Statistical Methods for Ultrahigh-dimensional Biomedical Data PI: Jianqing Fan This proposal develops novel statistical and bioinformatic tools for finding genes and proteins that are associated with clinical outcomes. Data sets from on-going biomedical studies on cancer such as breast cancer, multiple myeloma, neuroblastoma, lung tumor, and liver carcinogen will be critically analyzed using the newly developed statistical and bioinformatic tools. The research findings will have strong impact on understanding molecular mechanisms of cancer and developing therapeutic targets.
描述(由申请人提供):该提案开发了新的统计方法,以从高通量数据(如来自癌症研究的微阵列和蛋白质组数据)中选择一小组分子。这项研究的挑战是这些研究中继承的非线性维度,特别是当引入基因-基因相互作用时。该维度对统计计算、方法学发展和理论研究都有很大的影响。挑战将通过使用所提出的新颖的独立筛选方法来处理,该方法还解决了计算需求和稳定性,以及超高维统计推断中的随机误差积累问题。一个迭代的独立筛选方法被引入到寻找隐藏的签名基因,是微不足道的,但共同非常重要的临床结果。它还使我们能够消除冗余分子,这些分子与临床结果的相关性很小,但联合很弱。随着特征的数量减少到一个可管理的水平,惩罚伪似然方法将被引入到进一步选择相关基因。此外,还介绍了寻找分子协同基团的方法。独立筛选及其迭代版本的想法将被应用于各种统计问题,从高通量数据的分析,从多维回归和分类到生存时间的分析,全基因方差的估计和微阵列的归一化。所提出的方法的有效性将通过渐近理论和模拟研究进行评估。正在进行的癌症生物医学研究的数据集,如乳腺癌,多发性骨髓瘤,神经母细胞瘤,肺肿瘤和肝癌将使用新开发的统计和生物信息学工具进行批判性分析。公共卫生关系:超高维生物医学数据的统计方法PI:Jianqing Fan该提案开发了新的统计和生物信息学工具,用于发现与临床结果相关的基因和蛋白质。正在进行的癌症生物医学研究的数据集,如乳腺癌,多发性骨髓瘤,神经母细胞瘤,肺肿瘤和肝癌将使用新开发的统计和生物信息学工具进行批判性分析。研究结果将对理解癌症的分子机制和开发治疗靶点产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianqing Fan其他文献
Jianqing Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianqing Fan', 18)}}的其他基金
Quantitative Methods for Genome-wide Analysis of Macrophage Activation by ESCs
ESC 巨噬细胞激活的全基因组定量分析方法
- 批准号:
8476238 - 财政年份:2011
- 资助金额:
$ 26.68万 - 项目类别:
Quantitative Methods for Genome-wide Analysis of Macrophage Activation by ESCs
ESC 巨噬细胞激活的全基因组定量分析方法
- 批准号:
8668101 - 财政年份:2011
- 资助金额:
$ 26.68万 - 项目类别:
Quantitative Methods for Genome-wide Analysis of Macrophage Activation by ESCs
ESC 巨噬细胞激活的全基因组定量分析方法
- 批准号:
8244572 - 财政年份:2011
- 资助金额:
$ 26.68万 - 项目类别:
Quantitative Methods for Genome-wide Analysis of Macrophage Activation by ESCs
ESC 巨噬细胞激活的全基因组定量分析方法
- 批准号:
8325576 - 财政年份:2011
- 资助金额:
$ 26.68万 - 项目类别:
Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
- 批准号:
8423354 - 财政年份:2006
- 资助金额:
$ 26.68万 - 项目类别:
Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
- 批准号:
8225157 - 财政年份:2006
- 资助金额:
$ 26.68万 - 项目类别:
Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
- 批准号:
8627273 - 财政年份:2006
- 资助金额:
$ 26.68万 - 项目类别:
Statistical Methods for Ultrahigh-dimensional Biomedical Data
超高维生物医学数据的统计方法
- 批准号:
9900790 - 财政年份:2006
- 资助金额:
$ 26.68万 - 项目类别:
Semiparametric Models for Large Scale-Biomedical Data
大规模生物医学数据的半参数模型
- 批准号:
7171900 - 财政年份:2006
- 资助金额:
$ 26.68万 - 项目类别:
Semiparametric Models for Large Scale-Biomedical Data
大规模生物医学数据的半参数模型
- 批准号:
7570076 - 财政年份:2006
- 资助金额:
$ 26.68万 - 项目类别:
相似海外基金
Conference: Global Bioinformatics Education Summit 2024 — Energizing Communities to Power the Bioeconomy Workforce
会议:2024 年全球生物信息学教育峰会 — 激励社区为生物经济劳动力提供动力
- 批准号:
2421267 - 财政年份:2024
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant
Conference: The 9th Workshop on Biostatistics and Bioinformatics
会议:第九届生物统计与生物信息学研讨会
- 批准号:
2409876 - 财政年份:2024
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant
Open Access Block Award 2024 - EMBL - European Bioinformatics Institute
2024 年开放获取区块奖 - EMBL - 欧洲生物信息学研究所
- 批准号:
EP/Z532678/1 - 财政年份:2024
- 资助金额:
$ 26.68万 - 项目类别:
Research Grant
PAML 5: A friendly and powerful bioinformatics resource for phylogenomics
PAML 5:用于系统基因组学的友好且强大的生物信息学资源
- 批准号:
BB/X018571/1 - 财政年份:2024
- 资助金额:
$ 26.68万 - 项目类别:
Research Grant
PDB Management by The Research Collaboratory for Structural Bioinformatics
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
2321666 - 财政年份:2024
- 资助金额:
$ 26.68万 - 项目类别:
Cooperative Agreement
Planning Proposal: CREST Center in Bioinformatics
规划方案:CREST生物信息学中心
- 批准号:
2334642 - 财政年份:2023
- 资助金额:
$ 26.68万 - 项目类别:
Standard Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 26.68万 - 项目类别:
Continuing Grant
Building a Bioinformatics Ecosystem for Agri-Ecologists
为农业生态学家构建生物信息学生态系统
- 批准号:
BB/X018768/1 - 财政年份:2023
- 资助金额:
$ 26.68万 - 项目类别:
Research Grant
Integrative viral genomics and bioinformatics platform
综合病毒基因组学和生物信息学平台
- 批准号:
MC_UU_00034/5 - 财政年份:2023
- 资助金额:
$ 26.68万 - 项目类别:
Intramural














{{item.name}}会员




