Integrative Multiomics to Uncover Novel Genes and Networks in Pulmonary Arterial Hypertension

综合多组学揭示肺动脉高压的新基因和网络

基本信息

  • 批准号:
    10723950
  • 负责人:
  • 金额:
    $ 17.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-10 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract This proposal describes a mentored physician-scientist training program to uncover novel genes and networks in pulmonary arterial hypertension (PAH) using an integrative multiomics approach. The candidate is currently developing his academic career in the Division of Pulmonary & Critical Care at the David Geffen School of Medicine of UCLA. His long-term goal is to develop more effective targeted therapies for PAH patients informed by a deeper knowledge of the pathogenic mechanisms. Under the guidance of his mentors Drs. Mansoureh Eghbali and Xia Yang, the candidate will develop a unique cross-disciplinary skillset in integrative systems, single-cell, spatial and experimental biology that will facilitate his transition to research independence in the field of PAH. PAH remains an incurable disease characterized by irreversible pulmonary vascular remodeling, poor quality of life, and guarded long-term prognosis. Leveraging a well-powered cohort integrating the latest omics and computational methodologies is critically needed to identify candidate molecular drivers in PAH lungs as potential therapeutic targets. With access to RNA sequencing of the largest biobank of human PAH and control lungs to date (n=148), we have identified, by co-expression network analysis, a module of 266 genes (which we refer to as the “pink” module) that is strongly associated with PAH lungs. Through multimodal integration with right heart catheterization data, histological analyses, and genome-wide association studies (GWAS), we found the pink module is not only transcriptionally upregulated in PAH lungs, but also associated with increased hemodynamic severity, vascular remodeling, and genetic risk of PAH. Our preliminary data suggests pink module genes are 1) dysregulated in pulmonary vascular cells, 2) enriched in pathways relevant to pulmonary vascular remodeling such as endothelial-mesenchymal transition and Wnt signaling, 3) and may be candidate molecular drivers of PAH, such as ANTXR1, an integrin-like glycoprotein strongly implicated in various cancers but never studied in PAH. Given the mounting preliminary evidence for the importance of the bulk lung-derived pink module, a deeper investigation into its cell-specific role in PAH pathogenesis is needed to advance our understanding of the molecular drivers of PAH lungs and identify new therapeutic targets. We hypothesize that the pink module drives vascular remodeling in PAH through its dysregulation within pulmonary vascular cells. To test this hypothesis, we will 1) resolve the specific cellular context in which the pink module is dysregulated in PAH lungs using single- nucleus RNAseq and spatial transcriptomics and 2) determine the effects of in vitro knockdown of a pink module candidate driver gene, such as ANTXR1, in PAH pulmonary vascular cells. The proposed studies will utilize a combination of cutting-edge multiomic approaches and experimental biology to provide greater insight into a novel PAH-associated gene set derived from a large lung biobank, and will provide a foundation for my own lab and future R01 that will focus on basic mechanistic and translational studies.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Hong其他文献

Jason Hong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
  • 批准号:
    24K15741
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
All-in-One Smart Artificial Blood Vessels
一体化智能人造血管
  • 批准号:
    EP/X027171/2
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Fellowship
Development of nextgeneration cellular artificial blood vessels for coronary artery bypass surgery using bio-3D printer
使用生物 3D 打印机开发用于冠状动脉搭桥手术的下一代细胞人造血管
  • 批准号:
    23H02991
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Tissue engineered blood vessels
组织工程血管
  • 批准号:
    2891099
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Studentship
ealization of navigation surgery by automatic recognition of stomach and surrounding blood vessels using artificial intelligence
利用人工智能自动识别胃及周围血管,实现导航手术
  • 批准号:
    23K07176
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Realtime observation and optical control of living microbial probes in blood vessels
血管内活微生物探针的实时观察和光学控制
  • 批准号:
    23H00551
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Creation of a technique for visualization of stress concentration in blood and blood vessels by combined measurement of photoelasticity and ultrasonic Doppler velocimetry
通过光弹性和超声多普勒测速的组合测量,创建了一种可视化血管中应力集中的技术
  • 批准号:
    23H01343
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Shear stress-activated synthetic cells for targeted drug release in stenotic blood vessels
剪切应力激活合成细胞用于狭窄血管中的靶向药物释放
  • 批准号:
    10749217
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
Creation of 3D tissue culture system integrated with blood vessels and autonomic nerves
打造血管与植物神经融合的3D组织培养系统
  • 批准号:
    23H01827
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Biological function of osteoporotic drugs on bone-specific blood vessels and perivascular cells
骨质疏松药物对骨特异性血管和血管周围细胞的生物学功能
  • 批准号:
    22K21006
  • 财政年份:
    2022
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了