Individual Multimodal Pathway Statistics for Predicting Treatment Response in Late-life Depression

用于预测晚年抑郁症治疗反应的个体多模式通路统计

基本信息

项目摘要

Modest response rates to first-line antidepressant treatment for late-life depression (LLD) expose individuals to prolonged depressive symptoms that worsen their prognosis and associated health risks. Biomarkers of treatment response can alleviate this burden by identifying individuals most likely to benefit from antidepressant treatment. MRI measures of brain structure and function are a promising tool to identify such biomarkers, though the performance required for clinical translation has remained elusive. The goal of this proposal is to integrate complementary network measures from structural and functional MRI with clinical measures to generate biologically relevant features that can improve prediction of treatment outcome in LLD. The anticipated impact of this research will provide improved personalization of LLD treatment (NIMH Strategic Objective 3.2), while elucidating the neural circuitry indicative of treatment outcome (Objective 1.3). To achieve this goal, structural, resting state, and diffusion-weighted MRI will be collected from 75 participants with LLD before commencing an algorithmic antidepressant treatment protocol. The role of resting state functional connectivity as a mediator of the relationship between structural connectivity and clinical measures (baseline depression severity and change in depression severity over treatment) will be investigated within key neural circuitry at the group level. Individual Multimodal Pathway Statistics (IMPathS) will be derived to quantify the personalized importance of functional connectivity to the relationship between structural connectivity and depression severity for prediction of treatment outcome at the individual level. Utility of IMPathS will be assessed by their ability to improve performance beyond unimodal MRI and clinical predictors. Dr. Gerlach has a PhD in nuclear engineering and radiological sciences and is completing a transition from computational physics to computational neuroscience. He will require additional training in 1) the neurobiology, clinical manifestations, and treatment of LLD, 2) diffusion-weighted imaging processing and analysis, 3) advanced statistical training for development and testing of IMPathS, 4) human subjects, study design, and data collection. Completion of the training and research plan in this career development award will enable Dr. Gerlach to progress to an independent investigator focused on investigating the neurobiology of late life anxiety and mood disorders through improved integration of multimodal neuroimaging measures. Dr. Gerlach will execute this training and research with the full support of the Department of Psychiatry at the University of Pittsburgh, which is a highly collaborative environment focused on the development of early career scientists.
老年抑郁症(LLD)一线抗抑郁药物治疗的适度应答率使个人暴露于 长期的抑郁症状,恶化他们的预后和相关的健康风险。生物标记物 治疗反应可以通过确定最有可能受益的个人来减轻这一负担 抗抑郁治疗。脑部结构和功能的核磁共振测量是一种很有希望的工具 生物标志物,尽管临床翻译所需的性能仍然难以捉摸。这样做的目的是 建议将结构和功能磁共振成像的补充网络措施与 临床措施,以产生生物学上相关的特征,可以改善治疗预测 在LLD中的结果。这项研究的预期影响将改善LLD的个性化 治疗(NIMH战略目标3.2),同时阐明指示治疗结果的神经回路 (目标1.3)。为了实现这一目标,将从以下位置收集结构、静息状态和扩散加权MRI 75名患有LLD的参与者在开始算法抗抑郁治疗方案之前。的作用 作为结构连通性和结构连通性之间关系的中介的静止态功能连通性 临床措施(基线抑郁严重程度和治疗期间抑郁严重程度的变化)将是 在团体层面的关键神经回路内进行调查。个体多模式路径统计(IMPath S) 将推导出功能连接对关系的个性化重要性的量化 在个体水平预测治疗结果的结构连通性和抑郁严重程度。实用程序 将根据他们在单模MRI和临床之外改进性能的能力来评估IMPath 预测者。Gerlach博士拥有核工程和放射科学博士学位,正在完成一项 从计算物理到计算神经科学的过渡。他将需要在1)中接受额外培训 LLD的神经生物学、临床表现和治疗,2)弥散加权成像处理和 分析,3)开发和测试IMPath的高级统计培训,4)人类受试者,研究 设计和数据收集。完成该职业发展奖中的培训和研究计划将 使Gerlach博士成为一名独立的研究员,专注于最近的神经生物学研究 通过改进多模式神经成像措施的整合,改善生活焦虑和情绪障碍。Dr。 Gerlach将在精神病学系的全力支持下进行这项培训和研究 匹兹堡大学,这是一个高度协作的环境,专注于早期开发 职业科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Robert Gerlach其他文献

Andrew Robert Gerlach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
  • 批准号:
    JCZRQN202500010
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
  • 批准号:
    2025JJ70209
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
  • 批准号:
    2023JJ50274
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
  • 批准号:
    81973577
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
  • 批准号:
    81602908
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
  • 批准号:
    81501928
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 17.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 17.58万
  • 项目类别:
    Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政​​策的情绪动态
  • 批准号:
    10108433
  • 财政年份:
    2024
  • 资助金额:
    $ 17.58万
  • 项目类别:
    EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
  • 批准号:
    MR/X032809/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.58万
  • 项目类别:
    Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
  • 批准号:
    MR/X034690/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.58万
  • 项目类别:
    Fellowship
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
  • 批准号:
    24K13490
  • 财政年份:
    2024
  • 资助金额:
    $ 17.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
  • 批准号:
    EP/Z00022X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.58万
  • 项目类别:
    Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
  • 批准号:
    MR/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.58万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
  • 批准号:
    2335955
  • 财政年份:
    2024
  • 资助金额:
    $ 17.58万
  • 项目类别:
    Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
  • 批准号:
    AH/Y007549/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.58万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了