Statistical Methods for Gene Regulatory Analysis From Single Cell Genomics Data
单细胞基因组数据基因调控分析的统计方法
基本信息
- 批准号:10728209
- 负责人:
- 金额:$ 26.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-10 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectBenchmarkingCellsCenters of Research ExcellenceChromatinComputer softwareComputing MethodologiesDataData AnalysesData SetDatabasesDevelopmentDiseaseElementsEnvironmentGene ExpressionGene Expression RegulationGenesGenomeGenomicsGoalsHuman GeneticsLocationMethodsMultiomic DataPatientsPhenotypePilot ProjectsPublishingRegulator GenesRegulatory ElementResolutionSamplingStatistical MethodsTechnologyUntranslated RNAWorkcell typecomparativegene regulatory networkgenetic variantgenomic datainterestsingle cell analysissingle-cell RNA sequencingtranscription factortranscriptomics
项目摘要
Gene regulatory networks (GRNs) provide information on the cis-regulatory elements controlling contextspecific
expression of target genes, as well as the transcription factors acting on these elements.
Understanding the dynamics of gene regulation is fundamental for understanding how cells undergo
specialization for different functions, despite having the same genome; how cells respond to different
environments by modulating gene expression; and how non-coding genetic variants cause diseases.
Inference of GRNs from genomics data is a systematic approach to study gene regulation. However, the
accuracy of such inference is limited if the cellular context under interest is a heterogenous mixture. The
development of single cell genomics technologies can fill this gap by providing high-resolution GRNs.
Therefore, there is a compelling need for efficient statistical methods to infer GRNs from single cell
genomics data. The long-term goal of this project is to obtain a mechanistic understanding of how noncoding
genetic variants affect cellular context-dependent GRNs and influence phenotypes. Single cell
transcriptomic (scRNA-seq) and chromatin accessibility (scATAC-seq) data provide information on different
cellular features, i.e., gene expression and active regulatory element location, respectively. Integration of
these two types of data will provide more accurate information on gene regulation. In Specific Aim 1, we
will extend our initial studies inferring subpopulation-dependent GRNs from unpaired scRNA-seq and
scATAC-seq data (supported by a COBRE in Human Genetics Pilot Project since 02/01/2022) by
benchmarking existing methods for integrative analysis of unpaired scRNA-seq and scATAC-seq data to
build an optimized pipeline for unpaired data analysis. We will develop a statistical method to infer
subpopulation-specific GRNs and analyze large-scale published datasets to build a database of GRNs for
hundreds of cellular contexts. In Specific Aim 2, we will develop statistical methods for comparative gene
regulatory analysis based on single cell genomics data. The comparison of GRNs between samples from
diseased versus healthy patients or between two different treatments is an important scientific problem.
Thus, an efficient computational method for comparative gene regulatory analysis based on different types
of single cell genomics data is needed. In Specific Aim 3, we will develop a method and software to infer
cell type specific GRNs from sc-multiome data. This method and software would have a significant and
broad impact by providing a detailed view of how trans- and cis-regulatory elements work together to affect
gene expression in a cell type-specific manner.
基因调控网络(grn)提供了控制上下文特异性的顺式调控元件的信息
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert R. H Anholt其他文献
Robert R. H Anholt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert R. H Anholt', 18)}}的其他基金
Genetic Basis of Lifespan and Healthspan Extension by ACE Inhibition in Drosophila
果蝇 ACE 抑制延长寿命和健康寿命的遗传基础
- 批准号:
10681415 - 财政年份:2022
- 资助金额:
$ 26.09万 - 项目类别:
Genetic Basis of Lifespan and Healthspan Extension by ACE Inhibition in Drosophila
果蝇 ACE 抑制延长寿命和健康寿命的遗传基础
- 批准号:
10437098 - 财政年份:2022
- 资助金额:
$ 26.09万 - 项目类别:
Statistical Methods for Gene Regulatory Analysis From Single Cell Genomics Data
单细胞基因组数据基因调控分析的统计方法
- 批准号:
10728206 - 财政年份:2022
- 资助金额:
$ 26.09万 - 项目类别:
Reverse Engineering Quantitative Genetic Variation
逆向工程定量遗传变异
- 批准号:
9915941 - 财政年份:2018
- 资助金额:
$ 26.09万 - 项目类别:
Reverse Engineering Quantitative Genetic Variation
逆向工程定量遗传变异
- 批准号:
9769077 - 财政年份:2018
- 资助金额:
$ 26.09万 - 项目类别:
Genetics of Cocaine and Methamphetamine Sensitivity in Drosophila
果蝇可卡因和甲基苯丙胺敏感性的遗传学
- 批准号:
10164745 - 财政年份:2017
- 资助金额:
$ 26.09万 - 项目类别:
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 26.09万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 26.09万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 26.09万 - 项目类别:
Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 26.09万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 26.09万 - 项目类别:
Studentship
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 26.09万 - 项目类别:
Continuing Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 26.09万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 26.09万 - 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233968 - 财政年份:2023
- 资助金额:
$ 26.09万 - 项目类别:
Continuing Grant














{{item.name}}会员




