Statistical Methods for Gene Regulatory Analysis From Single Cell Genomics Data
单细胞基因组数据基因调控分析的统计方法
基本信息
- 批准号:10728206
- 负责人:
- 金额:$ 10.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-06 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Gene regulatory networks (GRNs) provide information on the cis-regulatory elements controlling contextspecific
expression of target genes, as well as the transcription factors acting on these elements.
Understanding the dynamics of gene regulation is fundamental for understanding how cells undergo
specialization for different functions, despite having the same genome; how cells respond to different
environments by modulating gene expression; and how non-coding genetic variants cause diseases.
Inference of GRNs from genomics data is a systematic approach to study gene regulation. However, the
accuracy of such inference is limited if the cellular context under interest is a heterogenous mixture. The
development of single cell genomics technologies can fill this gap by providing high-resolution GRNs.
Therefore, there is a compelling need for efficient statistical methods to infer GRNs from single cell
genomics data. The long-term goal of this project is to obtain a mechanistic understanding of how noncoding
genetic variants affect cellular context-dependent GRNs and influence phenotypes. Single cell
transcriptomic (scRNA-seq) and chromatin accessibility (scATAC-seq) data provide information on different
cellular features, i.e., gene expression and active regulatory element location, respectively. Integration of
these two types of data will provide more accurate information on gene regulation. In Specific Aim 1, we
will extend our initial studies inferring subpopulation-dependent GRNs from unpaired scRNA-seq and
scATAC-seq data (supported by a COBRE in Human Genetics Pilot Project since 02/01/2022) by
benchmarking existing methods for integrative analysis of unpaired scRNA-seq and scATAC-seq data to
build an optimized pipeline for unpaired data analysis. We will develop a statistical method to infer
subpopulation-specific GRNs and analyze large-scale published datasets to build a database of GRNs for
hundreds of cellular contexts. In Specific Aim 2, we will develop statistical methods for comparative gene
regulatory analysis based on single cell genomics data. The comparison of GRNs between samples from
diseased versus healthy patients or between two different treatments is an important scientific problem.
Thus, an efficient computational method for comparative gene regulatory analysis based on different types
of single cell genomics data is needed. In Specific Aim 3, we will develop a method and software to infer
cell type specific GRNs from sc-multiome data. This method and software would have a significant and
broad impact by providing a detailed view of how trans- and cis-regulatory elements work together to affect
gene expression in a cell type-specific manner.
基因调控网络(GRN)提供控制上下文特定的顺式调控元件的信息
目的基因的表达,以及作用于这些元件的转录因子。
了解基因调控的动力学是理解细胞如何经历
尽管拥有相同的基因组,但对不同功能的专门化;细胞如何对不同的
通过调节基因表达,以及非编码的遗传变异如何导致疾病。
从基因组学数据推断GRN是研究基因调控的一种系统方法。然而,
如果感兴趣的蜂窝上下文是异质混合物,则这种推断的准确性是有限的。这个
单细胞基因组学技术的发展可以通过提供高分辨率的GRN来填补这一空白。
因此,迫切需要有效的统计方法来从单个细胞中推断GRN
基因组学数据。这个项目的长期目标是机械地理解非编码是如何
遗传变异影响细胞上下文相关的GRN,并影响表型。单细胞
转录(scRNA-seq)和染色质可及性(scatac-seq)数据提供了不同
细胞功能,即基因表达和活性调控元件的定位。集成
这两种类型的数据将提供更准确的基因调控信息。在具体目标1中,我们
将扩展我们最初的研究,从未配对的scRNA-seq和
SCATAC-SEQ数据(自2022年2月1日起由人类遗传学试点项目COBRE提供支持)
对未配对的scRNA-seq和scatac-seq数据的综合分析的现有方法进行基准测试,以
为未配对的数据分析构建优化的管道。我们将开发一种统计方法来推断
亚群特定的GRN并分析大规模发布的数据集,以构建GRN数据库
数以百计的蜂窝环境。在具体目标2中,我们将开发比较基因的统计方法
基于单细胞基因组数据的调控分析。不同产地样品间GRN的比较
疾病患者与健康患者或两种不同治疗方法之间的比较是一个重要的科学问题。
因此,基于不同类型的比较基因调控分析是一种有效的计算方法
需要单细胞基因组学数据。在具体目标3中,我们将开发一种方法和软件来推断
来自sc-Multiome数据的特定于细胞类型的GRN。这种方法和软件将具有重要的和
通过提供跨法规和顺式法规要素如何协同工作来影响广泛影响的详细视图
以特定细胞类型的方式进行基因表达。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert R. H Anholt其他文献
Robert R. H Anholt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert R. H Anholt', 18)}}的其他基金
Genetic Basis of Lifespan and Healthspan Extension by ACE Inhibition in Drosophila
果蝇 ACE 抑制延长寿命和健康寿命的遗传基础
- 批准号:
10681415 - 财政年份:2022
- 资助金额:
$ 10.84万 - 项目类别:
Genetic Basis of Lifespan and Healthspan Extension by ACE Inhibition in Drosophila
果蝇 ACE 抑制延长寿命和健康寿命的遗传基础
- 批准号:
10437098 - 财政年份:2022
- 资助金额:
$ 10.84万 - 项目类别:
Statistical Methods for Gene Regulatory Analysis From Single Cell Genomics Data
单细胞基因组数据基因调控分析的统计方法
- 批准号:
10728209 - 财政年份:2021
- 资助金额:
$ 10.84万 - 项目类别:
Reverse Engineering Quantitative Genetic Variation
逆向工程定量遗传变异
- 批准号:
9915941 - 财政年份:2018
- 资助金额:
$ 10.84万 - 项目类别:
Reverse Engineering Quantitative Genetic Variation
逆向工程定量遗传变异
- 批准号:
9769077 - 财政年份:2018
- 资助金额:
$ 10.84万 - 项目类别:
Genetics of Cocaine and Methamphetamine Sensitivity in Drosophila
果蝇可卡因和甲基苯丙胺敏感性的遗传学
- 批准号:
10164745 - 财政年份:2017
- 资助金额:
$ 10.84万 - 项目类别:
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical Methods for Inferring Gene-Phenotype Associations Using Omic Data from Gene Knockout and Human Phenotype Studies
使用基因敲除和人类表型研究的组学数据推断基因表型关联的统计方法
- 批准号:
10733165 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
Statistical methods for interpretation of genetic variants by gene regulatory networks
通过基因调控网络解释遗传变异的统计方法
- 批准号:
10710939 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
Statistical Methods for Gene Regulatory Analysis From Single Cell Genomics Data
单细胞基因组数据基因调控分析的统计方法
- 批准号:
10728209 - 财政年份:2021
- 资助金额:
$ 10.84万 - 项目类别:
Statistical Methods to Study the Genetic Basis and Mechanisms of Trans Gene Regulation
研究转基因调控的遗传基础和机制的统计方法
- 批准号:
10028931 - 财政年份:2020
- 资助金额:
$ 10.84万 - 项目类别:
Statistical Methods to Study the Genetic Basis and Mechanisms of Trans Gene Regulation
研究转基因调控的遗传基础和机制的统计方法
- 批准号:
10627970 - 财政年份:2020
- 资助金额:
$ 10.84万 - 项目类别:
Statistical Methods to Study the Genetic Basis and Mechanisms of Trans Gene Regulation
研究转基因调控的遗传基础和机制的统计方法
- 批准号:
10408741 - 财政年份:2020
- 资助金额:
$ 10.84万 - 项目类别:
Statistical Methods to Study the Genetic Basis and Mechanisms of Trans Gene Regulation
研究转基因调控的遗传基础和机制的统计方法
- 批准号:
10212423 - 财政年份:2020
- 资助金额:
$ 10.84万 - 项目类别:
Statistical methods for gene regulatory analysis and single cell genomics
基因调控分析和单细胞基因组学的统计方法
- 批准号:
10001015 - 财政年份:2019
- 资助金额:
$ 10.84万 - 项目类别:
Statistical methods for gene regulatory analysis and single cell genomics
基因调控分析和单细胞基因组学的统计方法
- 批准号:
10439652 - 财政年份:2019
- 资助金额:
$ 10.84万 - 项目类别:
Statistical methods for gene regulatory analysis and single cell genomics
基因调控分析和单细胞基因组学的统计方法
- 批准号:
10218236 - 财政年份:2019
- 资助金额:
$ 10.84万 - 项目类别: