Consortium on Translational Research in Early Detection of Liver Cancer:Data Management and Coordinating Center (DMCC)
肝癌早期检测转化研究联盟:数据管理和协调中心(DMCC)
基本信息
- 批准号:10734730
- 负责人:
- 金额:$ 73.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-17 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressArtificial IntelligenceBioinformaticsBiological MarkersBiological Specimen BanksBiological Specimen databaseBiometryCancer BurdenCancer CenterCancer DetectionCenter for Translational Science ActivitiesCirrhosisClinicalClinical DataCohort StudiesCollaborationsCollectionCommon Data ElementCommunicationComputer AnalysisConsultationsCountryDana-Farber Cancer InstituteDataData CollectionData Coordinating CenterData Management ResourcesData ScienceData SetDatabasesDisciplineEarly Detection Research NetworkEarly DiagnosisEnsureEvaluationEvaluation StudiesImageInformation TechnologyInfrastructureLeadLeadershipLiverMalignant NeoplasmsMalignant neoplasm of liverManualsMissionModelingMonitorNoduleOutputPatientsProceduresProspective StudiesProspective, cohort studyProtocols documentationPublic HealthQualifyingRandomizedResearchResearch DesignResearch PersonnelResearch SupportRetrospective StudiesRiskSamplingScienceScientistScreening for Hepatocellular CancerSecureServicesSpecimenStatistical Data InterpretationStatistical MethodsSystemTestingTimeTranslational ResearchUnited StatesUniversity of Texas M D Anderson Cancer CenterWorkanticancer researchartificial intelligence methodbiomarker evaluationcancer biomarkerscomputational intelligencecomputerized data processingdata managementdata repositorydata sharingexperienceimprovedinformatics toolinnovationinstrumentmeetingsoperationprogramsprotocol developmentresearch studyrisk stratificationsuccesssymposiumvalidation studiesweb site
项目摘要
PROJECT SUMMARY ABSTRACT
The key to success of the Consortium on Translational Research in Early Detection of Liver Cancer (Consortium)
lies in good communication among scientists in multiple disciplines, efficient evaluation and prioritization of
promising biomarkers, and rigorous validation studies to demonstrate their potential clinical utilities in improving
the surveillance and early detection of liver cancer and stratifying the risk of liver cancer in patients with cirrhosis.
The overall aims of the proposed Data Management and Coordinating Center (DMCC) are to (i) enhance
communication and collaboration among Consortium investigators; (ii) coordinate Consortium collaborative
research and provide statistical support; (iii) develop and maintain integrated research and biorepository
databases for Consortium studies; and (iv) support and facilitate trans-Consortium collaborative research.
Under the direction of the Consortium Steering Committee, the DMCC will 1) perform network coordination and
promote collaborations among scientific investigators by providing support for Consortium meetings and
conference calls, developing and maintaining all Consortium documents, including the Manual of Operations and
Procedures (MOP), and by maintaining and enhancing the Consortium’s secure website; 2) support Consortium
collaborative studies by working with Consortium investigators on study design, protocol development, data
forms, and study manuals; coordinating and monitoring studies; tracking specimen sharing, blinding, and
randomization; and performing QA/QC and study evaluation; 3) maintain and enhance the COMPASS Data
Management System (CDMS) used to facilitate Consortium collaborative activities. CDMS provides online, end-
to-end data management solutions, including investigator and study coordinator communications, regulatory
compliance, remote subject registration, clinical data capture, biospecimen sample management, imaging data
repository, and document management. CDMS can provide online visibility of analytical datasets for all
participating researchers, and statistical and informatic tools relevant to Consortium research; 4) support and
facilitate trans-Consortium collaborative studies by promoting team science, monitoring study procedures, and
using cutting edge statistical, computational, and Artificial Intelligence methods to ensure efficient yet rigorous
study design and maximize research outputs.
Our research strategy is built from this guiding principle: provide the highest quality service to the Consortium
while remaining innovative and providing scientific leadership to help the Consortium achieve its mission. Our
qualifications include being the DMCC for the Early Detection Research Network since its inception, serving as
lead statisticians for the two largest ongoing cirrhosis cohort studies in this country, and being responsible for
two FDA-cleared Imaging AI products and many statistical innovations in early detection research.
项目摘要
肝癌早期检测转化研究联盟(Consortium on Translational Research in Early Detection of Liver Cancer)
在于多学科科学家之间的良好沟通,有效的评估和优先考虑
有前途的生物标志物,以及严格的验证研究,以证明它们在改善
肝癌的监测和早期发现以及肝硬化患者患肝癌的风险分层。
拟议的数据管理和协调中心的总体目标是:(i)加强
(二)研究人员之间的沟通和协作;(二)协调研究人员之间的协作
研究和提供统计支持; ㈢发展和维持综合研究和生物储存库
数据库的联盟研究;及(iv)支持和促进跨联盟合作研究。
在联合体指导委员会的指导下,DMCC将1)执行网络协调,
通过为联合会会议提供支持,促进科学调查人员之间的合作,
电话会议,开发和维护所有联合体文件,包括操作手册,
程序(MOP),并通过维护和加强联盟的安全网站; 2)支持联盟
通过与联盟研究者合作进行研究设计、方案制定、数据
表格和研究手册;协调和监测研究;跟踪样本共享、设盲和
随机化;进行QA/QC和研究评价; 3)维护和增强COMPASS数据
管理系统(CDMS)用于促进联合体的合作活动。CDMS提供在线、端-
端到端数据管理解决方案,包括研究者和研究协调员通信、监管
合规性、远程受试者注册、临床数据采集、生物标本样本管理、成像数据
存储库和文档管理。CDMS可以为所有人提供分析数据集的在线可见性
参与研究人员,以及与联盟研究相关的统计和信息工具; 4)支持和
通过促进团队科学,监测研究程序,促进跨联盟合作研究,
使用尖端的统计、计算和人工智能方法,确保高效而严格的
研究设计和最大限度地提高研究成果。
我们的研究战略是建立在这样一个指导原则:为财团提供最高质量的服务
同时保持创新并提供科学领导,以帮助该联盟实现其使命。我们
资格包括自成立以来一直是早期探测研究网络的DMCC,
在这个国家,两个最大的正在进行的肝硬化队列研究的主要统计学家,
两个FDA批准的成像AI产品和早期检测研究中的许多统计创新。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ziding Feng其他文献
Ziding Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ziding Feng', 18)}}的其他基金
Consortium on Translational Research in Early Detection of Liver Cancer: Data Management and Coordinating Center (DMCC)
肝癌早期检测转化研究联盟:数据管理和协调中心 (DMCC)
- 批准号:
10601411 - 财政年份:2018
- 资助金额:
$ 73.8万 - 项目类别:
Consortium on Translational Research in Early Detection of Liver Cancer: Data Management and Coordinating Center (DMCC)
肝癌早期检测转化研究联盟:数据管理和协调中心 (DMCC)
- 批准号:
10006517 - 财政年份:2018
- 资助金额:
$ 73.8万 - 项目类别:
Consortium on Translational Research in Early Detection of Liver Cancer: Data Management and Coordinating Center (DMCC)
肝癌早期检测转化研究联盟:数据管理和协调中心 (DMCC)
- 批准号:
10249162 - 财政年份:2018
- 资助金额:
$ 73.8万 - 项目类别:
Incorporating Biomarkers to Improve Lung Cancer Risk Prediction
结合生物标志物改善肺癌风险预测
- 批准号:
9020598 - 财政年份:2016
- 资助金额:
$ 73.8万 - 项目类别:
Consortium for the Study of Chronic Pancreatitis, Diabetes and Pancreatic Cancer: Coordinating and Data Management Center (CSCPDPC-CDMC)
慢性胰腺炎、糖尿病和胰腺癌研究联盟:协调和数据管理中心 (CSCPDPC-CDMC)
- 批准号:
9352326 - 财政年份:2015
- 资助金额:
$ 73.8万 - 项目类别:
Consortium for the Study of Chronic Pancreatitis, Diabetes and Pancreatic Cancer: Coordinating and Data Management Center (CSCPDPC-CDMC)
慢性胰腺炎、糖尿病和胰腺癌研究联盟:协调和数据管理中心 (CSCPDPC-CDMC)
- 批准号:
9336208 - 财政年份:2015
- 资助金额:
$ 73.8万 - 项目类别:
Statistical methods for Biomarker Discovery, Evaluation, and Validation
生物标志物发现、评估和验证的统计方法
- 批准号:
7152314 - 财政年份:2006
- 资助金额:
$ 73.8万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 73.8万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 73.8万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 73.8万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 73.8万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 73.8万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 73.8万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 73.8万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 73.8万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 73.8万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 73.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)